forked from mgrankin/over9000
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffgrad.py
127 lines (99 loc) · 5.13 KB
/
diffgrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import math
import torch
from torch.optim.optimizer import Optimizer
import numpy as np
import torch.nn as nn
# Original source: https://github.com/shivram1987/diffGrad/blob/master/diffGrad.py
# modifications: @lessw2020
# https://github.com/lessw2020/Best-Deep-Learning-Optimizers/blob/master/diffgrad/diffgrad.py
class DiffGrad(Optimizer):
r"""Implements diffGrad algorithm. It is modified from the pytorch implementation of Adam.
It has been proposed in `diffGrad: An Optimization Method for Convolutional Neural Networks`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _diffGrad: An Optimization Method for Convolutional Neural Networks:
https://arxiv.org/abs/1909.11015
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, version=0, weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super().__init__(params, defaults)
#save version
self.version = version
def __setstate__(self, state):
super().__setstate__(state)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('diffGrad does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
# Previous gradient
state['previous_grad'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq, previous_grad = state['exp_avg'], state['exp_avg_sq'], state['previous_grad']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# compute diffgrad coefficient (dfc)
if self.version==0:
diff = abs(previous_grad - grad)
elif self.version ==1:
diff = previous_grad-grad
elif self.version ==2:
diff = .5*abs(previous_grad - grad)
if self.version==0 or self.version==1:
dfc = 1. / (1. + torch.exp(-diff))
elif self.version==2:
dfc = 9. / (1. + torch.exp(-diff))-4 #DFC2 = 9/(1+e-(.5/g/)-4 #range .5,5
state['previous_grad'] = grad
# update momentum with dfc
exp_avg1 = exp_avg * dfc
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg1, denom)
return loss