-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframesandoflow.py
375 lines (308 loc) · 12.6 KB
/
framesandoflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""
This script is used for various functionalities relating to optical flow and rgb frames.
"""
import os
import numpy as np
import warnings
import cv2
class OpticalFlow:
def __init__(self, sAlgorithm="tvl1-fast", bThirdChannel=False, fBound=20.):
"""
Initializes the OpticalFlow object
:param sAlgorithm: Type of algorithm to use for calculating Optical Flow.
:param bThirdChannel: Whether to use third channel. (Third channel is required when viewing optical flow)
:param fBound: Upper bound for normalization.
"""
self.bThirdChannel = bThirdChannel
self.fBound = fBound
self.arPrev = np.zeros((1, 1))
if sAlgorithm == "tvl1-fast":
self.oTVL1 = cv2.DualTVL1OpticalFlow_create(scaleStep=0.5, warps=3, epsilon=0.02)
self.sAlgorithm = "tvl1"
elif sAlgorithm == "tvl1-quality":
self.oTVL1 = cv2.DualTVL1OpticalFlow_create()
# Default: (tau=0.25, lambda=0.15, theta=0.3, nscales=5, warps=5, epsilon=0.01, scaleStep=0.5)
self.sAlgorithm = "tvl1"
return
def first(self, arImage):
"""
Detects the first frame and returns initial optical flow.
:param arImage: input image
:return: initial optical flow.
"""
h, w, _ = arImage.shape
# save first image in black&white
self.arPrev = cv2.cvtColor(arImage, cv2.COLOR_BGR2GRAY)
# first flow = zeros
arFlow = np.zeros((h, w, 2), dtype=np.float32)
if self.bThirdChannel:
self.arZeros = np.zeros((h, w, 1), dtype=np.float32)
arFlow = np.concatenate((arFlow, self.arZeros), axis=2)
return arFlow
def next(self, arImage):
"""
Calculate optical flow with respect to previous frame.
:param arImage: input image.
:return: calculated optical flow.
"""
if self.arPrev.shape == (1, 1): return self.first(arImage)
arCurrent = cv2.cvtColor(arImage, cv2.COLOR_BGR2GRAY)
if self.sAlgorithm == "tvl1":
arFlow = self.oTVL1.calc(self.arPrev, arCurrent, None)
else:
raise ValueError("Unknown optical flow type")
arFlow = arFlow[:, :, 0:2]
# truncate to +/-20.0, then rescale to [-1.0, 1.0]
arFlow[arFlow > self.fBound] = self.fBound
arFlow[arFlow < -self.fBound] = -self.fBound
arFlow = arFlow / self.fBound
if self.bThirdChannel:
# add third empty channel
arFlow = np.concatenate((arFlow, self.arZeros), axis=2)
self.arPrev = arCurrent
return arFlow
def frames2flows(arFrames, sAlgorithm="tvl1-fast", bThirdChannel=False, bShow=False, fBound=20.):
"""
Converts given RGB frames to Optical Flows.
:param arFrames: input RGB frames.
:param sAlgorithm: Which algorithm to use for calculating Optical Flow.
:param bThirdChannel: Whether to use third channel. (Third channel is required when viewing optical flow)
:param bShow: Whether to display the calculated Optical flow.
:param fBound: Upper bound for normalization.
:return:
"""
# initialize optical flow calculation
oOpticalFlow = OpticalFlow(sAlgorithm=sAlgorithm, bThirdChannel=bThirdChannel, fBound=fBound)
liFlows = []
for i in range(len(arFrames)):
# calc dense optical flow
arFlow = oOpticalFlow.next(arFrames[i, ...])
liFlows.append(arFlow)
if bShow:
cv2.imshow("Optical flow", flow2colorimage(arFlow))
cv2.waitKey(1)
return np.array(liFlows)
def flow2colorimage(ar_f_Flow):
"""
Converts optical flow to a color image.
:param ar_f_Flow: optical flow.
:return: color image.
"""
h, w, c = ar_f_Flow.shape
if not isinstance(ar_f_Flow[0, 0, 0], np.float32):
warnings.warn("Need to convert flows to float32")
ar_f_Flow = ar_f_Flow.astype(np.float32)
ar_n_hsv = np.zeros((h, w, 3), dtype=np.uint8)
ar_n_hsv[..., 1] = 255
# get colors
mag, ang = cv2.cartToPolar(ar_f_Flow[..., 0], ar_f_Flow[..., 1])
ar_n_hsv[..., 0] = ang * 180 / np.pi / 2
ar_n_hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
ar_n_bgr = cv2.cvtColor(ar_n_hsv, cv2.COLOR_HSV2BGR)
return ar_n_bgr
def flows2colorimages(arFlows):
"""
Converts array of optical flow to array of color image.
:param arFlows: optical flow.
:return: array of color image.
"""
n, _, _, _ = arFlows.shape
liImages = []
for i in range(n):
arImage = flow2colorimage(arFlows[i, ...])
liImages.append(arImage)
return np.array(liImages)
def create_folders(sPath, type):
"""
Utility to create folders for storing the Frames and Optical flow.
:param sPath: Base path where folders are to be created
:param type: Whether to create folders for Frames or Optical flow.
:return: None
"""
cnt = 1
os.mkdir(type)
FrameClassPath = os.path.join(sPath, type)
os.chdir(FrameClassPath)
sVideoPath = os.path.join(sPath, "Classes")
li_videos = os.listdir(sVideoPath)
for item in range(len(li_videos)):
ClassName = str(cnt).zfill(4)
ClassFolderPath = os.path.join(FrameClassPath, ClassName)
print("Creating folder : ", ClassFolderPath)
os.mkdir(ClassFolderPath)
cnt += 1
os.chdir(sPath)
def Video2Frames(sVideoPath):
"""
Converts a given video into frames.
:param sVideoPath: Path of the input video.
:return: Frames in the given input video
"""
oVideo = cv2.VideoCapture(sVideoPath)
if (oVideo.isOpened() == False): raise ValueError("Error opening video file")
liFrames = []
while (True):
(bGrabbed, arFrame) = oVideo.read()
if bGrabbed == False: break
liFrames.append(arFrame)
return np.array(liFrames)
def files2frames(sPath):
"""
Converts images in a given folder to frames.
:param sPath: Path of folder containing the images.
:return: Frames of images present in the given input folder.
"""
a = os.listdir(sPath)
b = [item for item in a if item.endswith(".jpg")]
liFiles = sorted(b)
if len(liFiles) == 0: raise ValueError("No frames found in " + str(sPath))
liFrames = []
for sFramePath in liFiles:
a = sPath + "/" + sFramePath
arFrame = cv2.imread(a)
liFrames.append(arFrame)
# print(liFrames)
return np.array(liFrames)
def image_crop(arFrame, nHeightTarget, nWidthTarget):
"""
Crop each frame in array to specified size.
:param arFrames: Array of frames.
:param nHeightTarget: Target Height.
:param nWidthTarget: Target Width.
:return: Array of cropped frames.
"""
nHeight, nWidth, nDepth = arFrame.shape
sX = int(nWidth / 2 - nWidthTarget / 2)
sY = int(nHeight / 2 - nHeightTarget / 2)
arFrames = arFrame[sY:sY + nHeightTarget, sX:sX + nWidthTarget, :]
return arFrames
def frames_show(arFrames: np.array, nWaitMilliSec: int = 100):
"""
Displays OpenCV frames.
:param arFrames: array of frames to display.
:param nWaitMilliSec: duration to display the frames.
:return:
"""
nFrames, nHeight, nWidth, nDepth = arFrames.shape
for i in range(nFrames):
cv2.imshow("Frame", arFrames[i, :, :, :])
cv2.waitKey(nWaitMilliSec)
return
def images_crop(arFrames, nHeightTarget, nWidthTarget):
"""
Crop each frame in array to specified size.
:param arFrames: Array of frames.
:param nHeightTarget: Target Height.
:param nWidthTarget: Target Width.
:return: Array of cropped frames.
"""
nSamples, nHeight, nWidth, nDepth = arFrames.shape
sX = int(nWidth / 2 - nWidthTarget / 2)
sY = int(nHeight / 2 - nHeightTarget / 2)
arFrames = arFrames[:, sY:sY + nHeightTarget, sX:sX + nWidthTarget, :]
return arFrames
def images_rescale(arFrames):
"""
Rescale array of images (rgb 0-255) to [-1.0, 1.0]
:param arFrames: Array of frames.
:return: Array of rescaled frames.
"""
ar_fFrames = arFrames / 127.5
ar_fFrames -= 1.
return ar_fFrames
def images_normalize(arFrames, nFrames, nHeight, nWidth, bRescale=True):
"""
Normalizes images using:
- downsample/upsample number of frames
- crop to centered image
- rescale rgb 0-255 value to [-1.0, 1.0]
:param arFrames: array of input images.
:param nFrames: downsample/upsample to target number of frames.
:param nHeight: target height of images.
:param nWidth: target width of images.
:param bRescale: whether to rescale the images or not.
:return: array of normalized images.
"""
# normalize the number of frames (assuming typically downsampling)
arFrames = frames_downsample(arFrames, nFrames)
# crop to centered image
arFrames = images_crop(arFrames, nHeight, nWidth)
if bRescale:
# normalize to [-1.0, 1.0]
arFrames = images_rescale(arFrames)
else:
if np.max(np.abs(arFrames)) > 1.0: warnings.warn("Images not normalized")
return arFrames
def frames2files(arFrames, sTargetDir):
"""
Write array of frames to jpg files.
:param arFrames: array of input images
:param sTargetDir: path of directory where image files are to be stored.
:return: None
"""
for nFrame in range(arFrames.shape[0]):
cv2.imwrite(sTargetDir + "/frame%04d.jpg" % nFrame, arFrames[nFrame, :, :])
return
def flows2file(arFlows, sTargetDir):
"""
Saves array of flows to jpg files.
:param arFlows: array of Optical flow.
:param sTargetDir: Path of directory where Optical flow image files are to be stored.
:return: None
"""
n, h, w, c = arFlows.shape
# os.makedirs(sTargetDir, exist_ok=True)
arZeros = np.zeros((h, w, 1), dtype=np.float32)
for i in range(n):
# add third empty channel
ar_f_Flow = np.concatenate((arFlows[i, ...], arZeros), axis=2)
ar_n_Flow = np.round((ar_f_Flow + 1.0) * 127.5).astype(np.uint8)
cv2.imwrite(sTargetDir + "/flow%03d.jpg" % (i), ar_n_Flow)
return
def frames_downsample(arFrames, nFramesTarget):
""" Adjust number of frames (eg 123) to nFramesTarget (eg 79)
works also if originally less frames then nFramesTarget
"""
nSamples, _, _, _ = arFrames.shape
if nSamples == nFramesTarget: return arFrames
# down/upsample the list of frames
fraction = nSamples / nFramesTarget
index = [int(fraction * i) for i in range(nFramesTarget)]
liTarget = [arFrames[i, :, :] for i in index]
print("Change number of frames from %d to %d" % (nSamples, nFramesTarget))
return np.array(liTarget)
def ConversionVideo(sPath):
"""
Convert videos into RGB frames and Optical flow and store them on disk.
:param sPath: Path of directory where videos are stored.
:return: None
"""
create_folders(sPath, "Frames")
create_folders(sPath, "OFlows")
sVideosDir = os.path.join(sPath, "Classes")
sFrameDir = os.path.join(sPath, "Frames")
sOflowDir = os.path.join(sPath, "OFlows")
li_videos = os.listdir(sVideosDir)
for class_id in li_videos:
class_path = os.path.join(sVideosDir, class_id)
class_videos = os.listdir(class_path)
class_frame_output_path = os.path.join(sFrameDir, class_id)
class_flow_output_path = os.path.join(sOflowDir, class_id)
for video in class_videos:
id = video.split(".")[0]
frame_output_path = os.path.join(class_frame_output_path, id)
flow_output_path = os.path.join(class_flow_output_path, id)
os.mkdir(frame_output_path)
os.mkdir(flow_output_path)
input_video = os.path.join(class_path, video)
print("Converting Video : ", input_video)
print("Saving Frames to : ", frame_output_path)
print("Saving OFlows to : ", flow_output_path)
frame_array = Video2Frames(input_video)
downsampled_frame_array = frames_downsample(frame_array, 40)
oflows = frames2flows(downsampled_frame_array, sAlgorithm="tvl1-fast", bThirdChannel=False, bShow=False,
fBound=20.)
frames2files(downsampled_frame_array, frame_output_path)
flows2file(oflows, flow_output_path)
if "_name_" == "_main_":
ConversionVideo(os.getcwd())