This repository has been archived by the owner on Sep 3, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcitations.html
88 lines (79 loc) · 3.46 KB
/
citations.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<HTML>
<HEAD>
<TITLE>4ti2 -- A software package for algebraic, geometric and combinatorial problems
on linear spaces</TITLE>
</HEAD>
<BODY bgcolor = white>
<center>
<table border=0 width=90% cellspacing=5 cellpadding=5>
<tr>
<th>
<font size=6>Articles and books citing 4ti2</font>
</th>
</tr>
</table>
</center>
Please see
the
<ul>
<li>
<font size=5>
<a href="https://scholar.google.com/scholar?q=%224ti2%22">Google
Scholar search for 4ti2</a></font></li>
</ul>
for a list of articles and books citing 4ti2.
<p>
Below is a selection of articles and books citing 4ti2, which is by no
means complete. If you would like us to include your article or book in the
list below, please let us know.<p>
<ul>
<li> D. I. Bernstein and S. Sullivant. Unimodular Binary
Hierarchical
Models. <a href="http://arxiv.org/abs/1502.06131">e-print
arXiv:1502.06131 [math.CO]</a>
<li> J. A. De Loera, R. Hemmecke, and M. Köppe, Algebraic and geometric ideas in
the theory of discrete optimization, MOS-SIAM Series on Optimization, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2013,
<a href="http://dx.doi.org/10.1137/1.9781611972443">doi:10.1137/
1.9781611972443</a>, ISBN 978-1-61197-243-6
<li> R. Hemmecke and P. Malkin. Computing generating sets of lattice
ideals. e-print arXiv:math.CO/0508359, 2005.
<li> R. Hemmecke. Test Sets for Integer Programs with Z -Convex
Objective. e-print arXiv:math.CO/0309154, 2003.
<li> R. Hemmecke. Exploiting Symmetries in the Computation of Graver
Bases. e-print arXiv:math.CO/0410334, 2004.
<li> R. Hemmecke. Computation of Atomic Fibers of Z-Linear
Maps. e-print arXiv:math.CO/0410289, 2004.
<li> K. Fukuda, A.N. Jensen, N. Lauritzen, R. Thomas. The generic
Gröbner walk. e-print arXiv:math.AC/0501345, 2005.
<li> N. Eriksson. Toric ideals of homogeneous phylogenetic
models. Proceedings of the 2004 international symposium on
Symbolic and algebraic computation, pages 149--154. ACM Press,
2004.
<li> P. Diaconis and N. Eriksson. Markov bases for noncommutative
Fourier analysis of ranked data. to appear in the Journal of
Symbolic Computation.
<li> M. Ahmed. Magic graphs and the faces of the Birkhoff
polytope. e-print arXiv:math.CO/0405181, 2004.
<li> Y. Chen, I.H. Dinwoodie, and S. Sullivant. Sequential
Importance Sampling for Multiway Tables. Annals of
Statistics, in press, 2006.
<li> Y. Chen, I.H. Dinwoodie, A. Dobra, and M. Huber. Lattice
Points, Contingency Tables, and Sampling. In Contemporary
Mathematics, Vol. 374, 65-78. American Mathematical Society,
2005.
<li> F. Rapallo. Toric Statistical Models: Binomial and Parametric
Representations. Preprint #498 Dipartimento di Matematica,
Universita' di Genova. Submitted, 2004.
<li> S. Aoki and A. Takemura. Invariant minimal Markov basis for
sampling contingency tables with fixed marginals. METR
Technical Report, 03-25, University of Tokyo, Japan.
<li> Computational Algebra and Combinatorics of Toric
Ideals. Lectures and tutorials from the workshop on
"Computational Algebra and Combinatorics", Harish Chandra
Research Institute, Allahabad, India, Dec 8-13, 2003, (Rekha
Thomas, Diane Maclagan, Sara Faridi, Leah Gold, A.V. Jayanthan,
Amit Khetan and Tony Puthenpurakal). To be published by the
Bhaskaracharya Prathisthana, Pune, India.
</ul>
</BODY>