diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/.gitignore" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/.gitignore" new file mode 100644 index 0000000..13566b8 --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/.gitignore" @@ -0,0 +1,8 @@ +# Default ignored files +/shelf/ +/workspace.xml +# Editor-based HTTP Client requests +/httpRequests/ +# Datasource local storage ignored files +/dataSources/ +/dataSources.local.xml diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/inspectionProfiles/profiles_settings.xml" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/inspectionProfiles/profiles_settings.xml" new file mode 100644 index 0000000..105ce2d --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/inspectionProfiles/profiles_settings.xml" @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/misc.xml" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/misc.xml" new file mode 100644 index 0000000..a6218fe --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/misc.xml" @@ -0,0 +1,7 @@ + + + + + + \ No newline at end of file diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/modules.xml" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/modules.xml" new file mode 100644 index 0000000..763d09a --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/modules.xml" @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/vcs.xml" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/vcs.xml" new file mode 100644 index 0000000..6c0b863 --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/vcs.xml" @@ -0,0 +1,6 @@ + + + + + + \ No newline at end of file diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/\347\214\253\347\213\227\350\257\206\345\210\253.iml" "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/\347\214\253\347\213\227\350\257\206\345\210\253.iml" new file mode 100644 index 0000000..d0876a7 --- /dev/null +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/.idea/\347\214\253\347\213\227\350\257\206\345\210\253.iml" @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git "a/\347\214\253\347\213\227\350\257\206\345\210\253/model.py" "b/\347\214\253\347\213\227\350\257\206\345\210\253/model.py" index 572472c..6393c0a 100644 --- "a/\347\214\253\347\213\227\350\257\206\345\210\253/model.py" +++ "b/\347\214\253\347\213\227\350\257\206\345\210\253/model.py" @@ -1,5 +1,5 @@ -#coding=utf-8 -import tensorflow as tf +import tensorflow as tf +from tensorflow.keras import layers, models # 结构 # conv1 卷积层 1 # pooling1_lrn 池化层 1 @@ -8,104 +8,59 @@ # local3 全连接层 1 # local4 全连接层 2 # softmax 全连接层 3 -def inference(images, batch_size, n_classes): - - with tf.variable_scope('conv1') as scope: - # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap - weights = tf.get_variable('weights', - shape=[3, 3, 3, 16], - dtype=tf.float32, - initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)) - biases = tf.get_variable('biases', - shape=[16], - dtype=tf.float32, - initializer=tf.constant_initializer(0.1)) - conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME') - pre_activation = tf.nn.bias_add(conv, biases) - conv1 = tf.nn.relu(pre_activation, name=scope.name) - - with tf.variable_scope('pooling1_lrn') as scope: - pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1') - norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') - - with tf.variable_scope('conv2') as scope: - weights = tf.get_variable('weights', - shape=[3, 3, 16, 16], - dtype=tf.float32, - initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)) - biases = tf.get_variable('biases', - shape=[16], - dtype=tf.float32, - initializer=tf.constant_initializer(0.1)) - conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME') - pre_activation = tf.nn.bias_add(conv, biases) - conv2 = tf.nn.relu(pre_activation, name='conv2') - - # pool2 and norm2 - with tf.variable_scope('pooling2_lrn') as scope: - norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') - pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2') - - with tf.variable_scope('local3') as scope: - reshape = tf.reshape(pool2, shape=[batch_size, -1]) - dim = reshape.get_shape()[1].value - weights = tf.get_variable('weights', - shape=[dim, 128], - dtype=tf.float32, - initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) - biases = tf.get_variable('biases', - shape=[128], - dtype=tf.float32, - initializer=tf.constant_initializer(0.1)) - local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) - - # local4 - with tf.variable_scope('local4') as scope: - weights = tf.get_variable('weights', - shape=[128, 128], - dtype=tf.float32, - initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) - biases = tf.get_variable('biases', - shape=[128], - dtype=tf.float32, - initializer=tf.constant_initializer(0.1)) - local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4') - - # softmax - with tf.variable_scope('softmax_linear') as scope: - weights = tf.get_variable('softmax_linear', - shape=[128, n_classes], - dtype=tf.float32, - initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) - biases = tf.get_variable('biases', - shape=[n_classes], - dtype=tf.float32, - initializer=tf.constant_initializer(0.1)) - softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear') - - return softmax_linear - - - -def losses(logits, labels): - with tf.variable_scope('loss') as scope: - cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \ - (logits=logits, labels=labels, name='xentropy_per_example') - loss = tf.reduce_mean(cross_entropy, name='loss') - tf.summary.scalar(scope.name + '/loss', loss) - return loss - -def trainning(loss, learning_rate): - with tf.name_scope('optimizer'): - optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate) - global_step = tf.Variable(0, name='global_step', trainable=False) - train_op = optimizer.minimize(loss, global_step= global_step) - return train_op - -def evaluation(logits, labels): - with tf.variable_scope('accuracy') as scope: - correct = tf.nn.in_top_k(logits, labels, 1) - correct = tf.cast(correct, tf.float16) - accuracy = tf.reduce_mean(correct) - tf.summary.scalar(scope.name + '/accuracy', accuracy) - return accuracy \ No newline at end of file + +def inference(input_shape, n_classes): + model = models.Sequential() + + #修改 + model.add(layers.Input(shape=input_shape)) # 使用 Input 层定义输入形状 + + # Conv1,第一个卷积层,使用3x3的卷积核,输出16个特征图,使用ReLU激活函数 + model.add(layers.Conv2D(16, (3, 3), activation='relu', padding='same', name='conv1')) + + # Pooling1_lrn,添加一个最大池化层,使用3x3的池化窗口,步幅为2x2,然后进行批量归一化 + model.add(layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='pooling1')) + model.add(layers.BatchNormalization(name='norm1')) + + # Conv2,第二个卷积层,使用3x3的卷积核,输出16个特征图,使用ReLU激活函数 + model.add(layers.Conv2D(16, (3, 3), activation='relu', padding='same', name='conv2')) + + # Pooling2_lrn,进行批量归一化,然后添加一个最大池化层,使用3x3的池化窗口,步幅为1x1 + model.add(layers.BatchNormalization(name='norm2')) + model.add(layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='pooling2')) + + # Flatten,将多维输入一维化,为全连接层做准备 + model.add(layers.Flatten()) + + # Local3,第一个全连接层,有128个神经元,使用ReLU激活函数 + model.add(layers.Dense(128, activation='relu', name='local3')) + + # Local4,第二个全连接层,有128个神经元,使用ReLU激活函数 + model.add(layers.Dense(128, activation='relu', name='local4')) + + # Softmax,输出层,有n_classes个神经元,使用softmax激活函数 + model.add(layers.Dense(n_classes, activation='softmax', name='softmax_linear')) + + return model + + +# 计算模型的损失,SparseCategoricalCrossentropy是一个用于多分类问题的损失函数,适用于标签是整数的情况 +def losses(logits, labels): + loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) + loss = loss_fn(labels, logits) + return loss + + +# 定义模型的训练过程 +def trainning(model, loss, learning_rate): + # 使用Adam优化器,learning_rate是学习率 + optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) + # compile: 编译模型,指定优化器、损失函数和评估指标(准确率) + model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) + return model + + +# 评估模型的性能 +def evaluation(model, images, labels): + loss, accuracy = model.evaluate(images, labels) + return accuracy