forked from hayeong0/Diff-HierVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
274 lines (222 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import torch
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
import random
import commons
import utils
from augmentation.aug import Augment
from model.diffhiervc import Wav2vec2, DiffHierVC
from data_loader import AudioDataset, MelSpectrogramFixed
from vocoder.hifigan import HiFi
from torch.utils.data import DataLoader
torch.backends.cudnn.benchmark = True
global_step = 0
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
port = 50000 + random.randint(0, 100)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
mel_fn = MelSpectrogramFixed(
sample_rate=hps.data.sampling_rate,
n_fft=hps.data.filter_length,
win_length=hps.data.win_length,
hop_length=hps.data.hop_length,
f_min=hps.data.mel_fmin,
f_max=hps.data.mel_fmax,
n_mels=hps.data.n_mel_channels,
window_fn=torch.hann_window
).cuda(rank)
train_dataset = AudioDataset(hps, training=True)
train_sampler = DistributedSampler(train_dataset) if n_gpus > 1 else None
train_loader = DataLoader(
train_dataset, batch_size=hps.train.batch_size, num_workers=32,
sampler=train_sampler, drop_last=True, persistent_workers=True, pin_memory=True
)
if rank == 0:
test_dataset = AudioDataset(hps, training=False)
eval_loader = DataLoader(test_dataset, batch_size=1)
w2v = Wav2vec2().cuda(rank)
aug = Augment(hps).cuda(rank)
model = DiffHierVC(hps.data.n_mel_channels, hps.diffusion.spk_dim,
hps.diffusion.dec_dim, hps.diffusion.beta_min, hps.diffusion.beta_max, hps).cuda()
net_v = HiFi(
hps.data.n_mel_channels,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
path_ckpt = './vocoder/voc_hifigan.pth'
utils.load_checkpoint(path_ckpt, net_v, None)
net_v.eval()
net_v.dec.remove_weight_norm()
if rank == 0:
num_param = get_param_num(model.encoder)
print('[Encoder] number of Parameters:', num_param)
num_param = get_param_num(model.f0_dec)
print('[F0 Decoder] number of Parameters:', num_param)
num_param = get_param_num(model.mel_dec)
print('[Mel Decoder] number of Parameters:', num_param)
optimizer = torch.optim.AdamW(
model.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
model = DDP(model, device_ids=[rank])
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), model, optimizer)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [model, mel_fn, w2v, aug, net_v], optimizer,
scheduler_g, scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [model, mel_fn, w2v, aug, net_v], optimizer,
scheduler_g, scaler, [train_loader, None], None, None)
scheduler_g.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
model, mel_fn, w2v, aug, net_v = nets
optimizer = optims
scheduler_g = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
global global_step
train_loader.sampler.set_epoch(epoch)
model.train()
for batch_idx, (x, norm_f0, x_f0, length) in enumerate(train_loader):
x = x.cuda(rank, non_blocking=True)
norm_f0 = norm_f0.cuda(rank, non_blocking=True)
x_f0 = x_f0.cuda(rank, non_blocking=True)
length = length.cuda(rank, non_blocking=True).squeeze()
mel_x = mel_fn(x)
aug_x = aug(x)
nan_x = torch.isnan(aug_x).any()
x = x if nan_x else aug_x
x_pad = F.pad(x, (40, 40), "reflect")
w2v_x = w2v(x_pad)
f0_x = torch.log(x_f0+1)
optimizer.zero_grad()
loss_mel_diff, loss_mel_diff_rec, loss_f0_diff, loss_mel, loss_f0 = model.module.compute_loss(mel_x, w2v_x, norm_f0, f0_x, length)
loss_gen_all = loss_mel_diff + loss_mel_diff_rec + loss_f0_diff + loss_mel*hps.train.c_mel + loss_f0
if hps.train.fp16_run:
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optimizer)
grad_norm_g = commons.clip_grad_value_(model.parameters(), None)
scaler.step(optimizer)
scaler.update()
else:
loss_gen_all.backward()
grad_norm_g = commons.clip_grad_value_(model.parameters(), None)
optimizer.step()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optimizer.param_groups[0]['lr']
losses = [loss_mel_diff, loss_f0_diff]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/diff": loss_mel_diff, "loss/g/diff_rec": loss_mel_diff_rec, "loss/g/f0_diff": loss_f0_diff, "loss/g/mel": loss_mel, "loss/g/f0": loss_f0})
utils.summarize(
writer=writer,
global_step=global_step,
scalars=scalar_dict)
if global_step % hps.train.eval_interval == 0:
torch.cuda.empty_cache()
evaluate(hps, model, mel_fn, w2v, net_v, eval_loader, writer_eval)
if global_step % hps.train.save_interval == 0:
utils.save_checkpoint(model, optimizer, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
global_step += 1
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, model, mel_fn, w2v, net_v, eval_loader, writer_eval):
model.eval()
image_dict = {}
audio_dict = {}
mel_loss = 0
enc_loss = 0
enc_f0_loss = 0
diff_f0_loss = 0
with torch.no_grad():
for batch_idx, (y, norm_y_f0, y_f0) in enumerate(eval_loader):
y = y.cuda(0)
norm_y_f0 = norm_y_f0.cuda(0)
y_f0 = y_f0.cuda(0)
mel_y = mel_fn(y)
f0_y = torch.log(y_f0+1)
length = torch.LongTensor([mel_y.size(2)]).cuda(0)
y_pad = F.pad(y, (40, 40), "reflect")
w2v_y = w2v(y_pad)
y_f0_hat, y_mel, o_f0, o_mel = model(mel_y, w2v_y, norm_y_f0, f0_y, length, n_timesteps=6, mode='ml')
mel_loss += F.l1_loss(mel_y, o_mel).item()
enc_loss += F.l1_loss(mel_y, y_mel).item()
enc_f0_loss += F.l1_loss(f0_y, y_f0_hat).item()
diff_f0_loss += F.l1_loss(f0_y, o_f0).item()
if batch_idx > 100:
break
if batch_idx <= 4:
y_hat = net_v(o_mel)
enc_hat = net_v(y_mel)
plot_mel = torch.cat([mel_y, o_mel, y_mel], dim=1)
plot_mel = plot_mel.clip(min=-10, max=10)
image_dict.update({
"gen/mel_{}".format(batch_idx): utils.plot_spectrogram_to_numpy(plot_mel.squeeze().cpu().numpy()),
"F0/f0_{}".format(batch_idx):
utils.plot_f0_contour_to_numpy(mel_y.repeat_interleave(repeats=4, dim=2).squeeze().cpu().numpy(),
f0s= {'target_f0': y_f0.squeeze().cpu(),
'enc_f0': (torch.exp(y_f0_hat)-1).squeeze().cpu(),
'diff_6_f0': (torch.exp(o_f0)-1).squeeze().cpu()
})
})
audio_dict.update({
"gen/audio_{}".format(batch_idx): y_hat.squeeze(),
"gen/enc_audio_{}".format(batch_idx): enc_hat.squeeze()
})
if global_step == 0:
audio_dict.update({"gt/audio_{}".format(batch_idx): y.squeeze()})
mel_loss /= 100
enc_loss /= 100
enc_f0_loss /= 100
diff_f0_loss /= 100
scalar_dict = {"val/mel": mel_loss, "val/enc_mel": enc_loss, "val/enc_f0": enc_f0_loss, "val/diff_f0": diff_f0_loss}
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
scalars=scalar_dict
)
model.train()
if __name__ == "__main__":
main()