forked from Facebear-ljx/PROTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor.py
117 lines (82 loc) · 4.5 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Tuple
import jax
import jax.numpy as jnp
from common import Batch, InfoDict, Model, Params, PRNGKey
def update(key: PRNGKey, offline_actor: Model, critic: Model, value: Model,
batch: Batch, temperature: float, double: bool, args) -> Tuple[Model, InfoDict]:
# zero_acts = jnp.zeros_like(batch.actions)
v = value(batch.observations)
q1, q2 = critic(batch.observations, batch.actions)
if double:
q = jnp.minimum(q1, q2)
else:
q = q1
exp_a = jnp.exp((q - v) / temperature)
exp_a = jnp.minimum(exp_a, 100.0)
def actor_loss_fn(actor_params: Params) -> Tuple[jnp.ndarray, InfoDict]:
dist = offline_actor.apply({'params': actor_params},
batch.observations,
training=True,
rngs={'dropout': key})
log_probs = dist.log_prob(batch.actions)
if args.bc_pretrain:
actor_loss = - log_probs.mean()
else:
actor_loss = -(exp_a * log_probs).mean()
return actor_loss, {'actor_loss': actor_loss, 'adv': q - v}
new_offline_actor, info = offline_actor.apply_gradient(actor_loss_fn)
return new_offline_actor, info
def update_online(key: PRNGKey, online_actor: Model, offline_actor: Model, critic: Model, target_actor: Model, behavior: Model,
batch: Batch, temp_offline: float, temp_online: float, ratio: float, double: bool, log_alpha: float, args) -> Tuple[Model, InfoDict]:
rng1, rng2, rng3, rng4, rng5 = jax.random.split(key, num=5)
def actor_loss_fn(actor_params: Params) -> Tuple[jnp.ndarray, InfoDict]:
dist_pi = online_actor.apply({'params': actor_params},
batch.observations,
training=True,
rngs={'dropout': rng1})
# online samples
acts_pi = dist_pi.sample(seed=rng2)
# q1, q2 = critic(batch.observations, acts_pi)
qs = critic.apply({'params': critic.params}, batch.observations, acts_pi)
q = qs.mean(axis=0)
log_pi_probs = dist_pi.log_prob(acts_pi)
dist_mu = behavior(batch.observations, rngs={'dropout': rng3})
log_mu_probs = dist_mu.log_prob(acts_pi)
dist_pi_0 = offline_actor(batch.observations, rngs={'dropout': rng4})
log_pi_0_probs = dist_pi_0.log_prob(acts_pi)
dist_pi_k = target_actor(batch.observations, rngs={'dropout': rng5})
log_pi_k_probs = dist_pi_k.log_prob(acts_pi)
a_0 = dist_pi_0.sample(seed=rng5)
if args.sac:
actor_reg = log_alpha() * log_pi_probs + temp_online * (log_pi_probs - log_pi_k_probs)
else:
actor_reg = temp_online * (log_pi_probs - log_pi_k_probs)
actor_loss = (-q + actor_reg).mean()
# online actor loss
return actor_loss, {'actor_loss': actor_loss,
'bc_loss': -log_mu_probs.mean(),
'trust_region_pi0': -log_pi_0_probs.mean(),
'entropy': -log_pi_probs.mean(),
'trust_region_pik': -log_pi_k_probs.mean(),
'mse_loss': ((acts_pi - a_0)**2).mean(),
'mse_loss_mu': ((acts_pi - batch.actions)**2).mean()}
new_actor, info = online_actor.apply_gradient(actor_loss_fn)
return new_actor, info
def update_alpha(key: PRNGKey, entropy: float, log_alpha: float, target_entropy: float):
def temperature_loss_fn(temp_params):
temperature = log_alpha.apply({'params': temp_params})
alpha_loss = temperature * (entropy - target_entropy).mean()
return alpha_loss, {'alpha_loss': alpha_loss, 'alpha': temperature, 'target_entropy': target_entropy}
new_log_alpha, info = log_alpha.apply_gradient(temperature_loss_fn)
return new_log_alpha, info
def update_mu(key: PRNGKey, behavior: Model, batch: Batch) -> Tuple[Model, InfoDict]:
def bc_loss_fn(behavior_params: Params) -> Tuple[jnp.ndarray, InfoDict]:
dist = behavior.apply({'params': behavior_params},
batch.observations,
training=True,
rngs={'dropout': key})
log_probs = dist.log_prob(batch.actions)
bc_loss = (-log_probs).mean()
return bc_loss, {'bc_loss': bc_loss}
new_behavior, info = behavior.apply_gradient(bc_loss_fn)
return new_behavior, info