forked from Facebear-ljx/PROTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearner.py
281 lines (224 loc) · 11.8 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""Implementations of algorithms for continuous control."""
from typing import Optional, Sequence, Tuple
import jax
import flax
import jax.numpy as jnp
import numpy as np
import optax
import os
# NAN debug
# from jax.config import config
# config.update("jax_debug_nans", True)
import policy
import value_net
from actor import update as awr_update_actor
from actor import update_online as sac_update_actor
from actor import update_alpha
from actor import update_mu
from common import Batch, InfoDict, Model, PRNGKey
from critic import update_q, update_v, update_q_online
from ensemble import Ensemble, subsample_ensemble
from functools import partial
def target_update(critic: Model, target_critic: Model, tau: float) -> Model:
new_target_params = jax.tree_util.tree_map(
lambda p, tp: p * tau + tp * (1 - tau), critic.params,
target_critic.params)
return target_critic.replace(params=new_target_params)
@partial(jax.jit, static_argnames=['double', 'vanilla', 'args', 'offline'])
def _update_jit(
rng: PRNGKey, offline_actor: Model, critic: Model, value: Model,
target_critic: Model, behavior: Model, batch: Batch, discount: float, tau: float,
expectile: float, loss_temp: float, double: bool, vanilla: bool, offline: bool, args,
) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]:
key, rng = jax.random.split(rng)
# for _ in range(args.num_v_updates):
new_value, value_info = update_v(target_critic, value, batch, expectile, loss_temp, double, vanilla, key, args)
value = new_value
new_offline_actor, offline_actor_info = awr_update_actor(key, offline_actor, target_critic, new_value, batch, loss_temp, double, args)
new_critic, critic_info = update_q(critic, new_value, offline_actor, behavior, batch, discount, double, key, loss_temp, offline, args)
new_behavior, behavior_info = update_mu(key, behavior, batch)
new_target_critic = target_update(new_critic, target_critic, tau)
return rng, new_offline_actor, new_critic, new_value, new_target_critic, new_behavior, {
**critic_info,
**value_info,
**offline_actor_info,
**behavior_info
}
@partial(jax.jit, static_argnames=['double', 'vanilla', 'args', 'offline'])
def _update_jit_online(
rng: PRNGKey, offline_actor: Model, online_actor: Model, critic: Model, value: Model,
target_critic: Model, target_online_actor: Model, behavior: Model, batch: Batch, discount: float, tau: float, tau_actor: float,
expectile: float, temp: float, temp_online: float, ratio: float, double: bool, vanilla: bool, log_alpha: float,
target_entropy: float, args,
) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]:
key_critic, key_actor, key_alpha, rng = jax.random.split(rng, num=4)
for i in range(args.utd):
def slice(x):
assert x.shape[0] % args.utd == 0
batch_size = x.shape[0] // args.utd
return x[batch_size * i : batch_size * (i + 1)]
mini_batch = jax.tree_util.tree_map(slice, batch)
new_critic, key_critic, critic_info = update_q_online(critic, target_critic, target_online_actor, online_actor, behavior, offline_actor, mini_batch, discount, double, key_critic, temp, temp_online, log_alpha, args)
new_target_critic = target_update(new_critic, target_critic, tau)
critic = new_critic
target_critic = new_target_critic
new_online_actor, online_actor_info = sac_update_actor(key_actor, online_actor, offline_actor, new_critic, target_online_actor, behavior, mini_batch, temp, temp_online, ratio, double, log_alpha, args)
# if args.sac and args.auto_alpha:
new_log_alpha, alpha_info = update_alpha(key_alpha, online_actor_info['entropy'], log_alpha, target_entropy)
# else:
# new_log_alpha = log_alpha
# alpha_info = {'target_entropy': target_entropy}
new_target_actor = target_update(new_online_actor, target_online_actor, tau_actor)
return rng, new_online_actor, new_critic, new_target_critic, new_target_actor, new_log_alpha, {
**critic_info,
**online_actor_info,
**alpha_info
}
class Learner(object):
def __init__(self,
seed: int,
observations: jnp.ndarray,
actions: jnp.ndarray,
actor_lr: float = 3e-4,
value_lr: float = 3e-4,
critic_lr: float = 3e-4,
hidden_dims: Sequence[int] = (256, 256),
discount: float = 0.99,
tau: float = 0.005,
tau_actor: float = 0.005,
expectile: float = 0.8,
temperature: float = 0.1,
dropout_rate: Optional[float] = None,
layernorm: bool = False,
value_dropout_rate: Optional[float] = None,
max_steps: Optional[int] = None,
loss_temp: float = 1.0,
double_q: bool = True,
double_q_online: bool = True,
vanilla: bool = True,
auto_alpha: bool = True,
opt_decay_schedule: str = "cosine",
args=None):
"""
An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290
"""
self.actions = actions
self.expectile = expectile
self.tau = tau
self.tau_actor = tau_actor
self.discount = discount
self.temperature = temperature
self.loss_temp = loss_temp
self.loss_temp_online = loss_temp
self.double_q = double_q
self.double_q_online = double_q_online
self.vanilla = vanilla
self.args = args
self.target_entropy = actions.shape[1] * -1. / 2
self.ratio = 1.0
self.alpha_lr = actor_lr
rng = jax.random.PRNGKey(seed)
rng, offline_actor_key, behavior_key, online_actor_key, critic_key, value_key = jax.random.split(rng, 6)
action_dim = actions.shape[-1]
actor_def = policy.NormalTanhPolicy(hidden_dims,
action_dim,
log_std_scale=1e-3,
log_std_min=-5.0,
dropout_rate=dropout_rate,
state_dependent_std=False,
tanh_squash_distribution=False)
if opt_decay_schedule == "cosine":
schedule_fn = optax.cosine_decay_schedule(-actor_lr, max_steps)
optimiser = optax.chain(optax.scale_by_adam(),
optax.scale_by_schedule(schedule_fn))
else:
optimiser = optax.adam(learning_rate=actor_lr)
offline_actor = Model.create(actor_def,
inputs=[offline_actor_key, observations],
tx=optimiser)
behavior = Model.create(actor_def,
inputs=[behavior_key, observations],
tx=optimiser)
online_actor = Model.create(actor_def,
inputs=[online_actor_key, observations],
tx=optimiser)
target_online_actor = Model.create(actor_def,
inputs=[online_actor_key, observations],
tx=optimiser)
critic_cls = partial(value_net.Critic, hidden_dims=hidden_dims, layer_norm=layernorm)
critic_def = Ensemble(critic_cls, num=2)
critic = Model.create(critic_def,
inputs=[critic_key, observations, actions],
tx=optax.adam(learning_rate=critic_lr))
value_def = value_net.ValueCritic(hidden_dims,
layer_norm=layernorm,
dropout_rate=value_dropout_rate)
value = Model.create(value_def,
inputs=[value_key, observations],
tx=optax.adam(learning_rate=value_lr))
target_critic = Model.create(
critic_def, inputs=[critic_key, observations, actions])
init_temperature = 0.01
log_alpha = Model.create(value_net.Temperature(init_temperature),
inputs=[value_key],
tx=optax.adam(learning_rate=actor_lr))
self.offline_actor = offline_actor
self.online_actor = online_actor
self.target_online_actor = target_online_actor
self.behavior = behavior
self.critic = critic
self.value = value
self.target_critic = target_critic
self.log_alpha = log_alpha
self.rng = rng
def sample_actions(self,
observations: np.ndarray,
offline: bool = True,
temperature: float = 1.0) -> jnp.ndarray:
actor = self.offline_actor if offline else self.online_actor
rng, actions = policy.sample_actions(self.rng, actor.apply_fn,
actor.params, observations,
temperature)
self.rng = rng
actions = np.asarray(actions)
return np.clip(actions, -1, 1)
def update(self, batch: Batch, offline: bool) -> InfoDict:
if offline:
new_rng, new_offline_actor, new_critic, new_value, new_target_critic, new_behavior, info = _update_jit(
self.rng, self.offline_actor, self.critic, self.value, self.target_critic, self.behavior,
batch, self.discount, self.tau, self.expectile, self.loss_temp, self.double_q, self.vanilla, offline, self.args)
self.offline_actor = new_offline_actor
self.behavior = new_behavior
self.value = new_value
self.rng = new_rng
self.critic = new_critic
self.target_critic = new_target_critic
else:
new_rng, new_online_actor, new_critic, new_target_critic, new_target_actor, new_log_alpha, info = _update_jit_online(
self.rng, self.offline_actor, self.online_actor, self.critic, self.value, self.target_critic, self.target_online_actor, self.behavior,
batch, self.discount, self.tau, self.tau_actor, self.expectile, self.loss_temp, self.loss_temp_online, self.ratio, self.double_q_online,
self.vanilla, self.log_alpha, self.target_entropy, self.args)
self.online_actor = new_online_actor
self.target_online_actor = new_target_actor
self.log_alpha = new_log_alpha
self.rng = new_rng
self.critic = new_critic
self.target_critic = new_target_critic
return info
# offline2online transfer
def offline2online(self):
# offline actor -> online actor
new_online_actor = target_update(self.offline_actor, self.online_actor, tau=1.)
self.online_actor = new_online_actor
# online actor -> target online actor
new_target_online_actor = target_update(self.online_actor, self.target_online_actor, tau=1.)
self.target_online_actor = new_target_online_actor
def load(self, save_dir: str):
self.actor = self.actor.load(os.path.join(save_dir, 'actor'))
self.critic = self.critic.load(os.path.join(save_dir, 'critic'))
self.value = self.value.load(os.path.join(save_dir, 'value'))
self.target_critic = self.target_critic.load(os.path.join(save_dir, 'critic'))
def save(self, save_dir: str):
self.actor.save(os.path.join(save_dir, 'actor'))
self.critic.save(os.path.join(save_dir, 'critic'))
self.value.save(os.path.join(save_dir, 'value'))