This repository has been archived by the owner on May 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathsram_traffic_is.py
500 lines (390 loc) · 15.9 KB
/
sram_traffic_is.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import math
from tqdm import tqdm
def sram_traffic(
dimension_rows=4,
dimension_cols=4,
ifmap_h=7, ifmap_w=7,
filt_h=3, filt_w=3,
num_channels=3,
strides=1, num_filt=8,
ofmap_base=2000000, filt_base=1000000, ifmap_base=0,
sram_read_trace_file="sram_read.csv",
sram_write_trace_file="sram_write.csv"
):
# Dimensions of output feature map channel
E_h = math.floor((ifmap_h - filt_h + strides) / strides)
E_w = math.floor((ifmap_w - filt_w + strides) / strides)
# Number of pixels in one convolution window
px_per_conv_window = filt_h * filt_w * num_channels
r2c = px_per_conv_window
rc = filt_w * num_channels
hc = ifmap_w * num_channels
# Total number of ofmap px across all channels
num_ofmap_px = E_h * E_w * num_filt
e2 = E_h * E_w
e2m = num_ofmap_px
# Variables to calculate folds in runtime
num_h_fold = 1
num_v_fold = 1
max_parallel_window = 1
# Variables for utilization calculation
util = 0
compute_cycles = 0
if dimension_rows < px_per_conv_window:
num_h_fold = math.ceil(px_per_conv_window/dimension_rows)
else:
max_parallel_window = math.floor(dimension_rows/ px_per_conv_window)
reqd_cols = e2 # Total number of cols need to be mapped
max_cols_per_v_fold = max_parallel_window * dimension_cols
num_v_fold = math.ceil(reqd_cols / max_cols_per_v_fold)
remaining_cols = reqd_cols
cycles = 0
prev_cycl = 0
# These are the starting addresses of ifmap windows in the memory
all_ifmap_base_addr_list = []
for px in range(int(e2)):
addr = int(px / E_w) * strides * hc + (px%E_w) * strides * num_channels
all_ifmap_base_addr_list.append(addr)
# These are the starting addresses of filter windows in the memory
hc = ifmap_w * num_channels
all_filt_addr_list = []
for c in range(num_filt): #number of ofmap px in a ofmap channel
addr = (c) * r2c + filt_base
all_filt_addr_list.append(addr)
for v in tqdm(range(int(num_v_fold))):
# Take a slice of the starting addresses that are relevant for this v_fold
done = reqd_cols - remaining_cols
cols_this_fold = int(min(remaining_cols, max_parallel_window * dimension_cols))
idx_start = done
idx_end = idx_start + cols_this_fold
col_base_addr_list = all_ifmap_base_addr_list[idx_start:idx_end]
if num_h_fold > 1:
rem_h = r2c
for h in range(num_h_fold):
rows_this_fold = min(rem_h, dimension_rows)
cycles_i= \
gen_trace_ifmap_partial(
h_fold = h,
rc = rc, hc = hc,
col_addrs = col_base_addr_list,
cycle = cycles,
num_rows = dimension_rows,
num_cols = dimension_cols,
active_rows = rows_this_fold,
active_cols = cols_this_fold,
ifmap_base = ifmap_base,
sram_read_trace_file = sram_read_trace_file
)
data_out_cycles = cycles_i
cycles_f, all_filt_addr_list =\
gen_trace_filter_partial(
cycle = cycles_i,
h_fold = h, v_fold = v,
num_rows = dimension_rows, num_cols= dimension_cols,
num_filters= num_filt,
filt_addr_list= all_filt_addr_list,
active_rows= rows_this_fold, active_cols= cols_this_fold,
ofmap_base_addr= ofmap_base,
sram_read_trace_file= sram_read_trace_file
)
cycles_o = \
gen_trace_ofmap(
cycle = data_out_cycles,
v_fold= v, parallel_window= 1,
num_ofmap_this_fold= cols_this_fold,
window_size= rows_this_fold, num_filters= num_filt,
num_cols= dimension_cols, num_rows= dimension_rows,
ofmap_base= ofmap_base,
sram_write_trace_file= sram_write_trace_file
)
util_this_fold = (rows_this_fold * cols_this_fold) /(dimension_rows * dimension_cols)
rem_h -= rows_this_fold
cycles = max(cycles_f, cycles_o)
del_cycl = cycles - prev_cycl
util += util_this_fold * del_cycl
compute_cycles += del_cycl
prev_cycl = cycles
else:
parallel_window = int(math.ceil(cols_this_fold / dimension_cols))
cycles_i = \
gen_trace_ifmap(
cycle = cycles,
r= filt_w, rc= rc, hc= hc,
parallel_window= parallel_window,
ifmap_base_this_fold=col_base_addr_list,
num_ifmap_this_fold= cols_this_fold,
num_rows= dimension_rows, num_cols= dimension_cols,
window_size= r2c,
ifmap_base= ifmap_base,
sram_read_trace_file= sram_read_trace_file
)
cycles_f = \
gen_trace_filter(
cycle = cycles_i,
num_filters= num_filt, parallel_window= parallel_window,
window_size= r2c,
num_rows= dimension_rows, num_cols=dimension_cols,
filter_base= filt_base,
sram_read_trace_file= sram_read_trace_file
)
cycles_o = \
gen_trace_ofmap(
cycle = cycles_i,
v_fold = v, parallel_window= parallel_window,
num_ofmap_this_fold= cols_this_fold,
window_size= r2c,
num_filters= num_filt,
num_rows= dimension_rows, num_cols= dimension_cols,
ofmap_base= ofmap_base,
sram_write_trace_file= sram_write_trace_file
)
cycles = max(cycles_f, cycles_o)
#rows_this_fold = parallel_window * r2c
# Since multiple filters are being mapped on a single col due to large number of rows
# util calculation is a little involved,
# cols_this_fold --> number of filters mapped this fold
rem = cols_this_fold
tmp_util = 0
for _ in range(parallel_window):
col_used = min(rem, dimension_cols)
row_used = r2c # Number of row used will always be in multiple of r2c,
# parallel window calc took care of this
tmp_util += row_used * col_used
rem -= col_used
util_this_fold = tmp_util / (dimension_rows * dimension_cols)
del_cycl = cycles - prev_cycl
util += util_this_fold * del_cycl
compute_cycles += del_cycl
prev_cycl = cycles
remaining_cols -= cols_this_fold
avg_util = (util / compute_cycles) * 100
return (str(cycles), avg_util)
def gen_trace_ifmap_partial(
h_fold = 0,
rc = 3, hc = 3,
col_addrs=[], #Ensure that this takes care of the v_folding
cycle=0,
num_rows=4, num_cols=4,
active_rows=4, active_cols=4,
ifmap_base= 0,
sram_read_trace_file="sram_read.csv"
):
index = h_fold * num_rows
outfile = open(sram_read_trace_file, 'a')
# output formatting: Add empty commas for row addresses as no element is fed from the left
prefix = ""
for r in range(num_rows):
prefix += ", "
# Entries per cycle
for r in range(active_rows): # number of rows this fold
entry = str(cycle) + ", " + prefix
for c in range(active_cols):
# Calculating next address
row_idx = math.floor((index + r)/ rc)
col_idx = (index + r) % rc
addr = row_idx * hc + col_idx
addr += col_addrs[c] + ifmap_base
entry += str(int(addr)) + ", "
if active_cols < num_cols:
delta = num_cols - active_cols
for c in range(delta):
entry += ", "
cycle += 1
entry += "\n"
outfile.write(entry)
outfile.close()
return cycle
def gen_trace_filter_partial(
cycle = 0,
h_fold = 0, v_fold = 0,
num_rows = 4, num_cols = 4,
num_filters = 4,
filt_addr_list = [],
active_rows = 4,
active_cols = 4,
ofmap_base_addr = 20000000,
sram_read_trace_file = "sram_read.csv"
):
local_cycles = cycle
outfile = open(sram_read_trace_file, 'a')
# This list tracks the PS address generation per col
ofmap_px_id_list = []
for c in range(active_cols):
ofmap_index = v_fold * num_cols + c
ofmap_px_id_list.append(ofmap_index)
# Postfix is the empty string indicating that no data is fed from the cols
postfix = ""
for _ in range(active_cols):
postfix += ", "
# Per cycle one filter value is applied to all rows
#num_row_traces = num_filters + active_cols
for f in range(num_filters):
this_filt_addr = filt_addr_list[f]
entry = str(local_cycles) + ", "
# Calculate the row addresses for this cycle
row_entry = []
for r in range(active_rows):
row_entry.append(this_filt_addr)
this_filt_addr += 1
filt_addr_list[f] = this_filt_addr
# The log will get the addresses in reverse
l = len(row_entry)
for ridx in range(l):
entry += str(row_entry[l - ridx - 1]) + ", "
# Anand: TODO: Add partial sum input trace
# Calculate the column addresses
# In case of partial mapping partial sums (OFMAP addresses) need to be passed into the array
# This partial sum is fed from the top of the array and summed with the sums generated in this h_fold
#if h_fold == 0:
# for _ in range(num_cols):
# entry += ", "
#else:
# for col in range(active_cols):
# ofmap_ch_index = f - col
# if ofmap_ch_index >= 0:
# ofmap_addr = ofmap_px_id_list[f] * num_filters + ofmap_ch_index
# ofmap_addr += ofmap_base_addr
# entry += str(ofmap_addr) + ", "
# else:
# entry += ", "
local_cycles += 1
entry += postfix + "\n"
outfile.write(entry)
outfile.close()
return local_cycles, filt_addr_list
def gen_trace_ofmap(
cycle = 0,
v_fold = 0, parallel_window = 1,
num_ofmap_this_fold = 4,
window_size = 16,
num_filters = 4,
num_rows = 4, num_cols = 4,
ofmap_base = 2000000,
sram_write_trace_file = "sram_write.csv"
):
active_cols_list = []
rem = num_ofmap_this_fold
for p in range(parallel_window):
a = min(rem, num_cols)
active_cols_list.append(int(a))
rem -= a
start_index = num_cols * v_fold * parallel_window
end_index = start_index + num_ofmap_this_fold
ofmap_px_index_list = [] # This list has the indices of ofmap px on one ofmap
for px in range(start_index,end_index):
add = px * num_filters
ofmap_px_index_list.append(add)
# This offset indicates the cycle in which the data from the first col is ready
local_cycle = cycle + window_size
outfile = open(sram_write_trace_file, 'a')
total_ofmap_cycles = num_filters + max(active_cols_list)
for f in range(total_ofmap_cycles):
entry = str(local_cycle) + ", "
for p in range(parallel_window):
active_cols = active_cols_list[p]
for c in range(active_cols):
ofmap_ch = f - c
if (ofmap_ch >= 0) and (ofmap_ch < num_filters):
idx = c + p * num_cols
add = ofmap_px_index_list[idx] + ofmap_ch
add += ofmap_base
entry += str(add) + ", "
else:
entry += ", "
entry += "\n"
outfile.write(entry)
local_cycle += 1
outfile.close()
return (local_cycle - 1)
def gen_trace_ifmap(
cycle = 0,
r = 3, rc = 9, hc = 27,
parallel_window = 1,
ifmap_base_this_fold = [],
num_ifmap_this_fold = 1,
num_rows =4, num_cols= 4,
window_size = 16,
ifmap_base = 0,
sram_read_trace_file = "sram_read.csv"
):
local_cycle = cycle
outfile = open(sram_read_trace_file, 'a')
active_cols_list = []
rem = num_ifmap_this_fold
for p in range(parallel_window):
a = min(rem, num_cols)
active_cols_list.append(int(a))
rem -= a
prefix = ""
for _ in range(num_rows):
prefix += ", "
for p in range(parallel_window):
start_idx = p * num_cols
end_idx = start_idx + active_cols_list[p]
ifmap_base_addr = ifmap_base_this_fold[start_idx:end_idx]
for idx in range(window_size):
entry = str(local_cycle) + ", "
entry += prefix
# Calculating address within a window
row_idx = math.floor(idx / rc)
col_idx = (idx) % rc
local_addr = row_idx * hc + col_idx
active_cols = active_cols_list[p]
for col in range(active_cols):
add = local_addr + ifmap_base_addr[col] +ifmap_base
entry += str(int(add)) + ", "
if active_cols < num_cols:
for _ in range(active_cols, num_cols):
entry += ", "
entry += "\n"
outfile.write(entry)
local_cycle += 1
outfile.close()
return local_cycle
def gen_trace_filter(
cycle = 0,
num_filters = 4, parallel_window = 1,
window_size = 27,
num_rows = 4, num_cols =4,
filter_base = 10000000,
sram_read_trace_file = "sram_read.csv"
):
local_cycle = cycle
outfile = open(sram_read_trace_file, 'a')
postfix = ""
for _ in range(num_cols):
postfix += ", "
for f in range(num_filters):
entry = str(local_cycle) + ", "
for p in range(parallel_window):
for indx in range(window_size):
add = f * window_size + filter_base + (window_size - indx - 1)
entry += str(add) + ", "
rows_written = parallel_window * window_size
if rows_written < num_rows:
for _ in range(rows_written, num_rows):
entry += ", "
entry += postfix + "\n"
outfile.write(entry)
local_cycle += 1
outfile.close()
return local_cycle
if __name__ == "__main__":
h_h = 5
h_w = 5
r_h = 2
r_w = 2
c = 2
u =2
m = 30
dim_h = 4
dim_v = 9
sram_traffic(
dimension_rows= dim_h,
dimension_cols= dim_v,
ifmap_h= h_h, ifmap_w= h_w,
filt_h= r_h, filt_w= r_w,
num_channels= c,
strides= u,
num_filt= m
)