-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
170 lines (135 loc) · 4.92 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import streamlit as st
from dotenv import load_dotenv
from streamlit_option_menu import option_menu
from PIL import Image
import google.generativeai as genai
import json
import requests
from octoai.util import to_file
from octoai.client import OctoAI
# Load environment variables
load_dotenv()
GOOGLE_API_KEY = os.getenv("api_key") or st.secrets["api_key"]
headers = {"Authorization": os.getenv("Authorization") or st.secrets["Authorization"]}
OCTOAI_TOKEN = os.getenv("OCTOAI_TOKEN") or st.secrets["OCTOAI_TOKEN"]
url = "https://api.edenai.run/v2/image/generation"
client = OctoAI(api_key=OCTOAI_TOKEN)
# Set up Google Gemini-Pro AI model
genai.configure(api_key=GOOGLE_API_KEY)
# load gemini-pro model
def gemini_pro():
model = genai.GenerativeModel('gemini-pro')
return model
# Load gemini vision model
def gemini_vision():
model = genai.GenerativeModel('gemini-1.5-flash-latest')
return model
# get response from gemini pro vision model
def gemini_vision_response(model, prompt, image):
response = model.generate_content([prompt, image])
return response.text
# Get image from Stable Diffusion XL text-to-image generator
def sdxl_text_to_image(prompt):
image_resp = client.image_gen.generate_sdxl(
prompt=prompt
)
images = image_resp.images
if images[0].removed_for_safety:
return
ext = '.jpg'
while os.path.isfile(prompt + ext):
split = prompt.split()
suffix = split[-1]
i = 1
if (suffix[0], suffix[-1]) == ('(', ')') and suffix[1:-1].isdigit():
i += int(suffix[1:-1])
prompt = ' '.join(split[:-1])
prompt += f' ({i})'
else:
break
file_name = prompt + ext
to_file(images[0], file_name)
return file_name
# Get image from DALL-E 3
def dalle3_text_to_image(prompt, providers="openai/dall-e-3"):
payload = {
"providers": providers,
"text": prompt,
"resolution": "1024x1024",
}
response = requests.post(url, json=payload, headers=headers)
result = json.loads(response.text)
if providers in result:
image = result[providers]
if 'items' in image:
return image['items'][0]['image_resource_url']
# Set page title and icon
st.set_page_config(
page_title="VisionaryAI",
page_icon="🧠",
layout="centered",
initial_sidebar_state="expanded"
)
with st.sidebar:
user_picked = option_menu(
"VisionaryAI",
["ChatBot", "Image Captioning", "Text to Image"],
menu_icon="robot",
icons = ["chat-dots-fill", "image-fill", "brush-fill"],
default_index=0
)
def roleForStreamlit(user_role):
if user_role == 'model':
return 'assistant'
else:
return user_role
if user_picked == 'ChatBot':
model = gemini_pro()
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = model.start_chat(history=[])
st.title("🤖TalkBot")
#Display the chat history
for message in st.session_state.chat_history.history:
with st.chat_message(roleForStreamlit(message.role)):
st.markdown(message.parts[0].text)
# Get user input
user_input = st.chat_input("Message TalkBot:")
if user_input:
st.chat_message("user").markdown(user_input)
try:
response = st.session_state.chat_history.send_message(user_input)
with st.chat_message("assistant"):
st.markdown(response.text)
except BaseException as e:
st.error(repr(e).split("(")[0] + (":" if str(e) else "") + " " + str(e))
elif user_picked == 'Image Captioning':
model = gemini_vision()
st.title("🖼️Image Captioning")
image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
user_prompt = st.text_input("Enter the prompt for image captioning:")
if st.button("Generate Caption"):
if image is None:
st.warning("Please upload an image before generating a caption.")
else:
load_image = Image.open(image)
colLeft, colRight = st.columns(2)
with colLeft:
st.image(load_image.resize((800, 500)))
caption_response = gemini_vision_response(model, user_prompt, load_image)
with colRight:
st.info(caption_response)
elif user_picked == 'Text to Image':
model_choice = st.selectbox("Choose Image Generator:", ["DALL-E 3", "Stable Diffusion XL"])
if model_choice == "DALL-E 3":
model = dalle3_text_to_image
else:
model = sdxl_text_to_image
st.title("🎨 Text-to-Image Generation")
user_prompt = st.text_input("Enter the prompt for image generation:")
if st.button("Generate Image") and user_prompt:
generated_image = model(user_prompt)
if generated_image:
st.image(generated_image, caption=f"Generated by {model_choice}")
else:
st.error("Image generation failed.")