-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbeamline_alignment_with_motor_code.py
799 lines (735 loc) · 31.3 KB
/
beamline_alignment_with_motor_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
from scipy.ndimage import median_filter
import time
import epics as PyEpics
import plotly.express as px
import math
import pandas as pd
import numpy as np
from dash import Dash, dcc, html, Input, Output
import cv2
import os
import torch
import sys
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import plotly.graph_objs as go
from scipy.optimize import curve_fit
from PIL import Image
import dash_bootstrap_components as dbc
app = Dash(__name__, external_stylesheets=[dbc.themes.CYBORG])
#The sam_checkpoint will need to be changed
sam_checkpoint = os.path.expanduser('~/opt/auto_beamline_alignment_tomo/model/sam_vit_h_4b8939.pth')
model_type = "vit_h"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
####################################################
# all_image_masks hold masks for each image,
# edges hold the left edge and right edge of the beam selected,
# directory_input, angle_rotation, and time_exposure hold the info that the user typed it on the web
# -directory_input is used to find the directory that holds the images,
# -angle_rotation is how much the object will be rotated by
# -time_exposure is how much the camera will sleep for when it takes the pic
# normalized_images holds all the normalized images
# height and width hold the dimensions of the image used for sam gridpoint
# answer_normalization holds the answer on whether the user selected normalization
# image_0 will hold the image with just the beam and no object
# all the clicks are to keep track of how many times the user clicks the buttons
# style is just to change the style of text and fig is to change the background to black of the images
#pixel_size is used for calculations when the start theta, offset, and radius given
#camera_type, file_type, and cam_name are all names used for the motors that the user types in
#pname and froot are variables used for the file names for the motors
#mtr_samXE , mtr_samYE , mtr_aeroXE , mtr_samOme are names for the motors that the user types in
#off_set, rad_ius, and start_theta hold the values that the func_fitting function calculates
#x_universal and y_universal are the coordinates that the user clicked on to pinpoint the object in the image
all_image_masks = []
edges = []
directory_input = ''
angle_rotation = 0.0
time_exposure = 0.0
normalized_images = []
height = None
width = None
answer_normalization = None
clicks_tracker = 0
click_counter = 0
n_clicks_tracker = 0
im_0 = None
restart_clicks_tracker = 0
pixel_size = 0.0
camera_type = ''
file_type = ''
cam_name = ''
cam = ''
pname = None
froot = None
mtr_samXE = None
mtr_samYE = None
mtr_aeroXE = None
mtr_samOme = None
off_set = None
rad_ius = None
start_theta = None
x_univesal = None
y_universal = None
style = {'color' : '#7FDBFF', 'fontSize': 15, 'fontFamily' : 'OCR A Std, monospace'}
fig = {'layout': {
'plot_bgcolor': 'rgb(40, 40, 40)','paper_bgcolor': 'rgb(40, 40, 40)','xaxis': {'gridcolor': 'white'},
'yaxis': {'gridcolor': 'white'}}}
####################################################
#This function takes it normalize which is the answer to whether the user selects normalization and
# the image that the normalization will happen on. If user selects no normalization, then the image
# will be divided by 0. A cv2 color map is added as well to help SAM recognize objects better. The
# normalized image is returned
def normalization(normalize, image ,image_0):
if normalize:
first_ch0 = np.array(image_0).astype(np.float32)
else:
first_ch0 = np.ones(np.array(image_0).shape).astype(np.float32)
image_ch0 = np.array(image).astype(np.float32)
norm_image = image_ch0/first_ch0
norm_image = median_filter(norm_image,3)
norm_image = cv2.normalize(norm_image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
norm_image = norm_image.astype(np.uint8)
norm_image = cv2.cvtColor(norm_image, cv2.COLOR_GRAY2RGB)
norm_image = cv2.applyColorMap(norm_image, cv2.COLORMAP_JET)
return norm_image
####################################################
#This function is to calculate the trend line
def func_fitting(x,oft,rad,st):
return oft + rad*np.sin((st+x)*np.pi/180)
####################################################
#This function combines the masks for one image, so it's easier to display
def combine_masks(masks_combo):
merge_mask = np.zeros_like(masks_combo[0]['segmentation'])
for mask_combo in masks_combo:
data_mask = mask_combo['segmentation']
merge_mask += data_mask
merge_mask = np.clip(merge_mask, 0, 255).astype(np.uint8)
return merge_mask
####################################################
#This function takes in the x and y points that the user clicked on then goes through all the masks in the one image to find the
# mask that contains those coordinates. Once the mask is found, it determines the left and right x - edge coordinates based on
# the y. It then calculates the midpoint between the left and right x - coords. It returns the midpoint, the left x, and right x.
def get_mid_point(masks_example, y,x):
pixel = None
for i, mask_example in enumerate(masks_example):
segmentation_mask = mask_example['segmentation']
if segmentation_mask[y, x]:
pixel = i
else:
pass
row_mask = masks_example[pixel]['segmentation'][y,:]
object_indices = np.where(row_mask)[0]
if len(object_indices) > 0:
min_x = np.min(object_indices)
max_x = np.max(object_indices)
mid_point = calculate_mid(max_x,min_x)
return int(mid_point), int(min_x), int(max_x)
else:
return 'Step point might be too large'
def calculate_mid(x1, x2):
return (x1 + x2) / 2
def calculate_difference(x1,x2):
return abs(x1-x2)
####################################################
#This function first calculates the gridpoints by using the calculate_point functions which divides the
# points by the width or height of the image. Then defines the mask generator with those points so when
# the mask generator is called, SAM looks for those specific points in the images and makes the masks
# based off those points. Then the midpoint is calculated for that mask and compared to the edges to
# see whether the midpoint is close to the edges. The difference between the edges of the object and
# the edges of the beam is returned as well as the midpoint.
def generate_sam_and_find_edge(mid_mask,y_coord, wdth, hght, input_edges, norm_img):
x_gridpoint, y_gridpoint = calculate_point(mid_mask,y_coord,wdth,hght)
x_gridpoint_edge, y_gridpoint_edge = calculate_point(input_edges[0], input_edges[1], wdth,hght)
points = [np.array([[x_gridpoint,y_gridpoint],[x_gridpoint_edge,y_gridpoint_edge]])]
mask_generator_pts = SamAutomaticMaskGenerator(sam,points_per_side = None, point_grids = points)
masks_all = mask_generator_pts.generate(norm_img)
mp , left, right = get_mid_point(masks_all, y_coord, mid_mask)
diff_right = calculate_difference(right, edges[1])
diff_left = calculate_difference(left, edges[0])
return diff_right, diff_left, mp
def calculate_point(x,y,image_size_x, image_size_y):
point_x = x/image_size_x
point_y = y/image_size_y
return point_x, point_y
####################################################
#This function works similarly to the get midpoint function but just returns the edges coordinates.
def edge_detection(mask_edge, y_edge, x_edge):
pixel_num = 0
for i, m_edge in enumerate(mask_edge):
segmentation = m_edge['segmentation']
if segmentation[y_edge, x_edge]:
pixel_num = i
else:
pass
row = mask_edge[pixel_num]['segmentation'][y_edge,:]
indices = np.where(row)[0]
if len(indices) > 0:
min_x = np.min(indices)
max_x = np.max(indices)
return min_x, max_x
else: return 'Step point might be too large'
####################################################
#This function will move the pin out of the way to take a normalized image
def move_motors_normalize(time_norm):
mtr_samXE.move(-2.0, relative=True, wait=True)
pfname = move_motor(0, time_norm)
#Set image_0 to the image taken without the pin which will be used for normalization
image_norm = Image.open(pfname)
#Move object back into frame
mtr_samXE.move(2.0, relative=True, wait=True)
#Move motor to angle 0, this will be displayed to the user
image_path = move_motor(0, time_norm)
im = Image.open(image_path)
width_norm, height_norm = im.size
return width_norm, height_norm, im, image_norm
####################################################
#This function will move the motors, take a picture, normalize it if the user chooses to, find the midpoint for each image
# and then track if the midpoint gets too close to the edges. If it does, then the motors will begin moving the other way
# and continue until the object gets too close to the other edge. Once it does, the scatter plot of the midpoints and angles
# is created, a curve fit is applied, and the params are found. The original image with SAM with gridpoints used on it, the
# scatter, and the params are returned.
def graph_scatter(first_midpoint, rots, y_coord):
global im_0
coords = np.array([])
theta = np.array([])
midpoint = first_midpoint
mid_for_mask_reverse = first_midpoint
mid_for_mask = first_midpoint
coords = np.append(coords, midpoint)
theta = np.append(theta, 0)
th = 0
th_reverse = 0
num_of_rotations = 180/rots
for i in range(1,int(num_of_rotations)):
image_file = move_motor(i * angle_rotation, time_exposure)
im = Image.open(image_file)
if answer_normalization == 1:
norm_im = normalization(1, im, im_0)
else:
norm_im = normalization(0, im, im_0)
dif_right, dif_left, mid_point = generate_sam_and_find_edge(mid_for_mask, y_coord, width, height,edges, norm_im)
if dif_left < 50 or dif_right < 50:
#Move motor back to angle 0 so the pin can move the other direction
for j in range(1,int(num_of_rotations)):
image_file_reverse = move_motor(-j * angle_rotation, time_exposure)
im_reverse = Image.open(image_file_reverse)
if answer_normalization == 1:
norm_im_reverse = normalization(1, im_reverse, im_0)
else:
norm_im_reverse = normalization(0, im_reverse, im_0)
diff_right_reverse, diff_left_reverse, mid_reverse = generate_sam_and_find_edge(mid_for_mask_reverse, y_coord, width, height,edges,norm_im_reverse)
if diff_left_reverse < 50 or diff_right_reverse < 50:
break
else:
th_reverse -= angle_rotation
mid_for_mask_reverse = mid_reverse
theta = np.append(theta, th_reverse)
coords = np.append(coords, mid_for_mask_reverse)
print(f'Midpoint for reverse {mid_for_mask_reverse}')
break
else:
th += angle_rotation
theta = np.append(theta, th)
mid_for_mask = mid_point
print(f'Midpoint is now {mid_for_mask}')
coords = np.append(coords, mid_for_mask)
print(f'coords {coords}')
print(f'theta {theta}')
max_ = np.max(coords)
min_ = np.min(coords)
rad = (max_ - min_) / 2
off = (max_ + min_) / 2
df = pd.DataFrame({'x': theta, 'y': coords})
bounds = ([-3000, 0, -180], [3000, 2000, 180])
p0 = [off, rad, 0]
params, params_cov = curve_fit(func_fitting, theta, coords, p0=p0, bounds=bounds)
df_fit = pd.DataFrame(
{'x': theta, 'y': [math.ceil(value) for value in func_fitting(theta, params[0], params[1], params[2])]})
scatter = go.Figure()
scatter.add_trace(go.Scatter(x=df['x'], y=df['y']))
scatter.add_trace(go.Scatter(x=df_fit['x'], y=df_fit['y']))
scatter.update_layout(xaxis_title='Angle (Degrees)', yaxis_title='Midpoint', plot_bgcolor='black')
scatter.update_traces(mode='markers')
display = combine_masks(all_image_masks[0])
reg = px.imshow(display, color_continuous_scale='gray')
return reg, scatter, params
####################################################
#This function moves the motors and returned the file name
def move_motor(angle,time_needed):
global cam_name, file_type, camera_type, pname
t0 = time.time()
mtr_samOme.move(angle, wait = True)
############# VERIFY!!!!
PyEpics.caput(cam_name + ':' + camera_type + ':ImageMode', 'Single', wait=True)
PyEpics.caput(cam_name + ':' + camera_type + ':AcquireTime', time_needed, wait=True)
PyEpics.caput(cam_name + ':' + file_type +':AutoSave', 'Yes', wait=True)
time.sleep(0.05)
PyEpics.caput(cam_name + ':' + camera_type + ':Acquire', 1, wait=True)
time.sleep(0.05)
PyEpics.caput(cam_name + ':' + file_type + ':AutoSave', 'No', wait=True)
time.sleep(0.05)
fname=PyEpics.caget(cam_name + ':' + file_type + ':FileName_RBV', 'str') + "_%06d"%(PyEpics.caget(cam_name + ':' + file_type + ':FileNumber_RBV')-1) + '.tif'
pfname=os.path.join(pname, fname)
return pfname
app.layout = dbc.Container([
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
html.H1('Automated Beamline Alignment ', style = {'color' : '#7FDBFF', 'textAlign': 'center', 'fontSize': 30, 'fontFamily' : 'OCR A Std, monospace'})
])
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.H2(['Instructions'], style = {'color' : '#7FDBFF', 'textAlign': 'left', 'fontSize': 20, 'fontFamily' : 'OCR A Std, monospace', 'fontWeight': 'bold'})
]),
dbc.Row([
html.Div(['1. Enter the directory, exposure time, and rotation step. Select or unselect the "Normalization" and then click "Run first image"'], style = style),
html.Div(['**** Optional: Enter Epics PV names for samXE, samYE, aeroX, aero, pixel size, file type, camera type, and camera name. ****'], style = style),
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(['2. Select the "Draw rectangle" tool in the upper right hand corner of the "SAM" image. Select the beam in the SAM image and click "Submit beam".'], style = style)
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(['3. Select the "Zoom" tool in the upper right hand corner of the "SAM" image. Click the middle of the object in the SAM image and click "Run all images".'], style = style)
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(['4. Once offset, radius, and start theta are displayed, click the "Center pin and verify" button to center the beam.'], style = style)
]),
])
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['Directory: '], style=style)
]),
dbc.Row([
dcc.Input(id='directory-input', type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['Exposure Time (seconds): '], style=style)
]),
dbc.Row([
dcc.Input(id = 'time-input', value = 0.3, max = 10, type = 'number', style={'width': '200px'}) # Adjust style as needed
])
]),
dbc.Col([
dbc.Row([
html.Div(['Rotation Step (degrees): '], style=style)
]),
dbc.Row([
dcc.Input(id = 'angle-input',value = 5, max = 10, type = 'number', style={'width': '200px'}) # Adjust style as needed
])
])
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['samXE (optional): '], style=style)
]),
dbc.Row([
dcc.Input(id='samXE-input', value = '1ide1:m34',type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['samZE (optional): '], style=style)
]),
dbc.Row([
dcc.Input(id='samYE-input', value = '1ide1:m36',type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['aeroXE (optional): '], style=style)
]),
dbc.Row([
dcc.Input(id='aeroXE-input', value = '1ide1:m101',type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['Rot (optional): '], style=style)
]),
dbc.Row([
dcc.Input(id='aero-input', value = '1ide:m9',type='text', style={'width': '200px'})
])
]),
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['Pixel size (microns)(optional): '], style=style)
]),
dbc.Row([
dcc.Input(id='pixel-input', value = 1.172,type='number', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['File type (optional): '], style = style)
]),
dbc.Row([
dcc.Input(id='filetype-input', value = 'TIFF1',type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['Camera type (optional): '], style = style)
]),
dbc.Row([
dcc.Input(id='camera-input', value = 'cam1',type='text', style={'width': '200px'})
])
]),
dbc.Col([
dbc.Row([
html.Div(['Camera name (optional): '], style = style)
]),
dbc.Row([
dcc.Input(id='cameraname-input', value = '1idPG1',type='text', style={'width': '200px'})
])
])
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dcc.Checklist(id = 'checklist-id', options = [{'label': 'Add normalization (strongly recommended)', 'value': 'norm'}],style = style)
])
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
html.Button('Run first image', id='button', style={'background-color': 'black', 'width': '200px', 'color' : '#7FDBFF', 'fontSize': 15, 'fontFamily' : 'OCR A Std, monospace'})
]),
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['Original'], style = style)
]),
dbc.Row([
dcc.Graph(id='og-img',figure = fig)
])
]),
dbc.Col([
dbc.Row([
html.Div(['Normalized if selected, else original with color map.'], style = style)
]),
dbc.Row([
dcc.Graph(id='nl-img',figure = fig)
])
]),
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['SAM'], style = style),
]),
dbc.Row([
dcc.Graph(id='sam-img',figure = fig, config={'modeBarButtonsToAdd': ['drawrect', 'eraseshape']})
]),
dbc.Row([
html.Br()
]),
dbc.Col([
html.Button('Submit beam', id='button-edge', style={'background-color': 'black', 'width': '200px', 'color' : '#7FDBFF', 'fontSize': 15, 'fontFamily' : 'OCR A Std, monospace'})
]),
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(id='beam', style=style)
]),
dbc.Row([
html.Br()
]),
dbc.Col([
dbc.Row([
html.Div(['2. Select the "Draw rectangle" tool in the upper right hand corner of the "SAM" image. Select the beam in the SAM image and click "Submit beam".'], style = style)
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(['3. Select the "Zoom" tool in the upper right hand corner of the "SAM" image. Select the middle of the object in the SAM image and click "Run all images".'], style = style)
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(['4. Once offset, radius, and start theta are displayed, click the "Center pin and verify" button to center the beam.'], style = style)
]),
]),
dbc.Row([
html.Br()
]),
dbc.Col([
html.Button('Run all images', id='button-two',
style={'background-color': 'black', 'width': '200px', 'color': '#7FDBFF', 'fontSize': 15,
'fontFamily': 'OCR A Std, monospace'})
]),
dbc.Row([
html.Br()
]),
dbc.Col([
dbc.Row([
html.Div(['SAM with Grid Point'], style = style)
]),
dbc.Row([
dcc.Graph(id='sam-grid',figure = fig)
])
]),
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['Graph'], style = style)
]),
dbc.Row([
dcc.Graph(id='my-graph', figure =fig, style = {'float' : 'center'})
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Div(id = 'output-data', style = style)
])
])
]),
dbc.Row([
html.Br()
]),
dbc.Col([
html.Button('Center pin and verify', id='button-restart',
style={'background-color': 'black', 'width': '200px', 'color': '#7FDBFF', 'fontSize': 15,
'fontFamily': 'OCR A Std, monospace'})
]),
dbc.Row([
html.Br()
]),
dbc.Row([
html.Br()
]),
dbc.Row([
dbc.Col([
dbc.Row([
html.Div(['New Image at Center of Axis'], style = style)
]),
dbc.Row([
dcc.Graph(id='new-image',figure = fig)
])
]),
dbc.Col([
dbc.Row([
html.Div(['Graph for new Image'], style = style)
]),
dbc.Row([
dcc.Graph(id='new-graph', figure =fig, style = {'float' : 'center'})
]),
dbc.Row([
html.Div(id = 'output-new-data', style = style)
])
])
]),
])
####################################################
#This callback returns the original image, the normalized or not normalized image, and the image with the
# regular SAM used on it once the button has been clicked and the directory, angle, and time been entered,
@app.callback(
Output('og-img', 'figure'),
Output('nl-img', 'figure'),
Output('sam-img', 'figure'),
Input('directory-input', 'value'),
Input('time-input', 'value'),
Input('angle-input', 'value'),
Input('button', 'n_clicks'),
Input('checklist-id', 'value'),
Input('samXE-input', 'value'),
Input('samYE-input', 'value'),
Input('aeroXE-input', 'value'),
Input('aero-input', 'value'),
Input('pixel-input', 'value'),
Input('filetype-input', 'value'),
Input('camera-input', 'value'),
Input('cameraname-input', 'value'),
)
def update_imgs(dt, time_input, angle_input, clicks, checklist, xe, ye, aeroxe, aero_input, pixel_input, file, cam_input, camname):
global clicks_tracker
global height, width, directory_input, time_exposure, angle_rotation, answer_normalization,pixel_size, camera_type, file_type,cam_name,off_set,rad_ius, mtr_samXE, mtr_samYE, mtr_samOme, mtr_aeroXE, pname, froot, im_0
mask_generator = SamAutomaticMaskGenerator(sam)
if clicks is not None:
if clicks > clicks_tracker:
clicks_tracker = clicks
if dt is not None and time_input is not None and angle_input is not None:
pname = dt
time_exposure = time_input
angle_rotation = angle_input
pixel_size = pixel_input
file_type = file
cam_name = camname
camera_type = cam_input
froot = 'pin_alignment'
# PyEpics.caput(cam_name + ':' + file_type + ':FilePath', pname, wait=True)
PyEpics.caput(cam_name + ':' + file_type + ':FileName', froot, wait=True)
mtr_samXE = PyEpics.Motor(xe)
mtr_samYE = PyEpics.Motor(ye)
mtr_samOme = PyEpics.Motor(aero_input)
mtr_aeroXE = PyEpics.Motor(aeroxe)
print(f'******directory input: {pname} **********')
print(f'******froot input: {froot} **********')
width, height, im_1, image0 = move_motors_normalize(time_exposure)
im_0 = image0
if checklist is None:
answer_normalization = 0
image_norm = normalization(0, im_1, image0)
elif 'norm' in checklist:
image_norm = normalization(1, im_1, image0)
answer_normalization = 1
else:
image_norm = normalization(0, im_1, image0)
answer_normalization = 0
mask_image_norm = mask_generator.generate(image_norm)
display_mask = combine_masks(mask_image_norm)
all_image_masks.append(mask_image_norm)
og_img = px.imshow(im_1, color_continuous_scale='gray', template = 'plotly_dark')
nl_img = px.imshow(image_norm, color_continuous_scale='gray', template = 'plotly_dark')
sam_img = px.imshow(display_mask, color_continuous_scale='jet', template = 'plotly_dark')
return og_img, nl_img, sam_img
else:
return px.imshow([]), px.imshow([]), px.imshow([])
else:
return px.imshow([]), px.imshow([]), px.imshow([])
@app.callback(
Output('new-image', 'figure'),
Output('output-new-data', 'children'),
Output('new-graph', 'figure'),
Input('button-restart', 'n_clicks')
)
def new_image(clicks_restart):
global restart_clicks_tracker, pixel_size, rad_ius, off_set, start_theta, im_0, width, height, answer_normalization, y_universal, angle_rotation, im_0
mask_generator = SamAutomaticMaskGenerator(sam)
if clicks_restart is not None:
if clicks_restart > restart_clicks_tracker:
restart_clicks_tracker = clicks_restart
beam_center = edges[1] - edges[0]
move_aero_x = ((off_set - (beam_center/2)) * pixel_size)/1000
move_sam_x = (rad_ius * (np.sin(start_theta*np.pi/180))*pixel_size)/1000
move_sam_y = (-rad_ius * (np.cos(start_theta*np.pi/180))*pixel_size)/1000
print(move_aero_x,move_sam_x,move_sam_y)
mtr_samXE.move(move_sam_x,relative=True, wait=True)
mtr_samYE.move(move_sam_y,relative=True, wait=True)
mtr_aeroXE.move(move_aero_x, relative=True, wait=True) #Is this the right mtr??
width, height, im_1, img0 = move_motors_normalize(time_exposure)
im_0 = img0
if answer_normalization == 0:
image_norm = normalization(0, im_1, img0)
else:
image_norm = normalization(1, im_1, img0)
mask_image_norm = mask_generator.generate(image_norm)
display_mask = combine_masks(mask_image_norm)
sam_img = px.imshow(display_mask, color_continuous_scale='gray', template = 'plotly_dark')
first_midpoint, no_x, no_y = get_mid_point(mask_image_norm, y_universal, x_univesal)
reg1, scatter1, params1 = graph_scatter(first_midpoint,angle_rotation, y_universal)
return sam_img, f'Rotation axis position (pixels): {params1[0]}, Pin offset from rotation axis (pixels): {params1[1]}, Pin offset angle (degrees): {params1[2]}', scatter1
else:
return px.imshow([]), px.imshow([]), px.imshow([]), px.imshow([]), go.Figure(), None
else:
return px.imshow([]), px.imshow([]), px.imshow([]), px.imshow([]), go.Figure(), None
####################################################
#This call back returns the beam edge coordinates once the beam has been selected
@app.callback(
Output('beam', 'children'),
Input('sam-img', 'relayoutData'),
Input('button-edge', 'n_clicks'),
)
def update_edge(relayout_data, click):
global click_counter
if click is not None:
if click > click_counter:
click_counter = click
if "shapes" in relayout_data:
x_coordinate = relayout_data['shapes'][0]['x0']
y_coordinate = relayout_data['shapes'][0]['y0']
minimum_x, maximum_x = edge_detection(all_image_masks[0], int(y_coordinate), int(x_coordinate))
edges.append(minimum_x)
edges.append(maximum_x)
print(f'Max: {maximum_x} and Min: {minimum_x}')
return f'Beam has been selected. Edges of beam are {minimum_x} and {maximum_x}'
####################################################
#This callback returns the image with SAM gridpoints used on it as well as the graph with specific offset,
# radius, and start theta calculated once the button has been clicked and the user selects the object.
@app.callback(
Output('sam-grid', 'figure'),
Output('my-graph', 'figure'),
Output('output-data', 'children'),
Input('button-two', 'n_clicks'),
Input('sam-img', 'clickData'),
)
def update_sam_grid(n_clicks, clickData):
global width, height,directory_input, angle_rotation, answer_normalization, n_clicks_tracker, time_exposure, off_set, rad_ius, start_theta, x_univesal, y_universal
if n_clicks is not None:
if n_clicks > n_clicks_tracker:
n_clicks_tracker = n_clicks
x_coord = clickData['points'][0]['x']
x_univesal = x_coord
y_coord = clickData['points'][0]['y']
y_universal = y_coord
first_midpoint, no_x, no_y = get_mid_point(all_image_masks[0], y_coord, x_coord)
reg, scatter, params = graph_scatter(first_midpoint, angle_rotation, y_coord)
off_set = params[0]
rad_ius = params[1]
start_theta = params[2]
return reg, scatter, f'Rotation axis position (pixels): {params[0]}, Pin offset from rotation axis (pixels): {params[1]}, Pin offset angle (degrees): {params[2]}'
else:
return px.imshow([]), go.Figure(), f''
else:
return px.imshow([]), go.Figure(), f''
if __name__ == "__main__":
app.run_server(host='0.0.0.0', debug=False, port = 8055)