-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
56 lines (42 loc) · 2.27 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from ultralytics import YOLO
from utils import detect_objects, load_image, draw_bounding_boxes
models = {
"YOLOv8l": YOLO('yolov8l.pt'),
"YOLOv8l-OIV7": YOLO('yolov8l-oiv7.pt'),
}
st.title("Object Detection with YOLOv8 Model")
st.write("Upload an image and click 'Analyse Image' to detect objects with different models.")
# Image uploader widget
uploaded_file = st.file_uploader("Choose an image to analyze...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = load_image(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Button to trigger image analysis
if st.button("Analyse Image"):
st.write("Detecting objects...")
all_results = {}
for model_name, model in models.items():
detected_labels_confidences, detection_time, bounding_boxes = detect_objects(model, image)
all_results[model_name] = {"detections": detected_labels_confidences,
"time": detection_time,
"Boxes": bounding_boxes}
# Display the results for each model
for model_name, results in all_results.items():
st.write(f"Results for {model_name}:")
st.write(f"Time taken for detection: {results['time']:.2f} seconds")
st.write(f"Number of detected objects: {len(results['detections'])}")
labels = []
for label, confidence in results["detections"]:
labels.append(label)
st.write(f'Label: {label}, Confidence: {confidence * 100:.2f}%')
st.write(f"Names of the components detected in the uploaded image: {labels}")
image_with_bb = image.copy()
# Draw bounding boxes on the image for specific model
image_with_bounding_boxes = draw_bounding_boxes(image_with_bb, all_results[model_name]["detections"],
all_results[model_name]["Boxes"])
# Display the image with bounding boxes
st.image(image_with_bounding_boxes, caption=f"Bounding Boxes for {model_name}", use_column_width=True)
# clear the image after each plot
image = image.copy()