-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_checkpoint.py
71 lines (52 loc) · 1.86 KB
/
validate_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import sys
import os
import numpy as np
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from sklearn.metrics import accuracy_score
from tqdm import tqdm
FOOD101_CLASSES = 101
DATASET_PATH = 'dataset'
CHECKPOINT_URL = 'https://huggingface.co/AlexKoff88/mobilenet_v2_food101/resolve/main/pytorch_model.bin'
def fix_names(state_dict):
state_dict = {key.replace('module.', ''): value for (key, value) in state_dict.items()}
return state_dict
def load_checkpoint(model):
checkpoint = torch.hub.load_state_dict_from_url(CHECKPOINT_URL, progress=False)
weights = fix_names(checkpoint['state_dict'])
model.load_state_dict(weights)
return model
def validate(model, val_loader):
predictions = []
references = []
with torch.no_grad():
for images, target in tqdm(val_loader):
output = model(images)
predictions.append(np.argmax(output, axis=1))
references.append(target)
predictions = np.concatenate(predictions, axis=0)
references = np.concatenate(references, axis=0)
return accuracy_score(predictions, references)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
val_dataset = datasets.Food101(
root=DATASET_PATH,
split = 'test',
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
download = True
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=128, num_workers=4, shuffle=False)
model = models.mobilenet_v2(num_classes=FOOD101_CLASSES)
model.eval()
model = load_checkpoint(model)
top1 = validate(model, val_loader)
print(f'Accuracy @ top1: {top1}')