-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCreateRegressionModel.py
177 lines (148 loc) · 8.36 KB
/
CreateRegressionModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from classification_models.tfkeras import Classifiers
import tensorflow as tf
from tensorflow import keras
import numpy as np
# Modèle basé sur CenterNet
# Sans pré-convolution lors du sur-échantillonnage
def GetRegressionModel(image_width, image_height, n_labels):
L2_REG = 1.25e-5
shape = (image_height,image_width,3)
# Charge le ResNet18
ResNet18, preprocess_input = Classifiers.get("resnet18")
base_model = ResNet18(input_shape=shape, weights="imagenet", include_top=False)
# Ajout de la régularisation L2
for layer in base_model.layers:
layer.kernel_regularizer = tf.keras.regularizers.l2()
out = tf.keras.models.model_from_json(base_model.to_json())
out.set_weights(base_model.get_weights())
# Ajout des déconvolutions
c5 = tf.keras.layers.Dropout(rate=0.5)(out.get_layer("relu1").output)
dcn = tf.keras.layers.Conv2DTranspose(256, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="deconv1")(c5)
dcn = tf.keras.layers.BatchNormalization()(dcn)
dcn = tf.keras.layers.Activation("relu")(dcn)
dcn = tf.keras.layers.Conv2DTranspose(128, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="deconv2")(dcn)
dcn = tf.keras.layers.BatchNormalization()(dcn)
dcn = tf.keras.layers.Activation("relu")(dcn)
dcn = tf.keras.layers.Conv2DTranspose(64, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="features")(dcn)
dcn = tf.keras.layers.BatchNormalization()(dcn)
features = tf.keras.layers.Activation("relu")(dcn)
# Création de la heatmap
output_heatmap = tf.keras.layers.Conv2D(
64,(3, 3),
padding="same",
use_bias=False,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
name="heatmap_conv2D",
)(features)
output_heatmap = tf.keras.layers.BatchNormalization(name="heatmap_norm")(output_heatmap)
output_heatmap = tf.keras.layers.Activation("relu", name="heatmap_activ")(output_heatmap)
output_heatmap = tf.keras.layers.Conv2D(
n_labels,(1, 1),
padding="valid",
activation=tf.nn.sigmoid,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
bias_initializer=tf.constant_initializer(-np.log((1.0 - 0.1) / 0.1)),
name="heatmap",
)(output_heatmap)
return tf.keras.models.Model(inputs=out.input, outputs=output_heatmap)
# Modèle basé sur CenterNet
# Avec pré-convolution lors du sur-échantillonnage
def GetRegressionModel2(image_width, image_height, n_labels):
L2_REG = 1.25e-5
shape = (image_height,image_width,3)
# Charge le ResNet18
ResNet18, preprocess_input = Classifiers.get("resnet18")
base_model = ResNet18(input_shape=shape, weights="imagenet", include_top=False)
# Ajout de la régularisation L2
for layer in base_model.layers:
layer.kernel_regularizer = tf.keras.regularizers.l2()
out = tf.keras.models.model_from_json(base_model.to_json())
out.set_weights(base_model.get_weights())
# Ajout des déconvolutions
c5 = tf.keras.layers.Dropout(rate=0.5)(out.get_layer("relu1").output)
up = tf.keras.layers.Conv2DTranspose(256, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="deconv1")(c5)
up = tf.keras.layers.BatchNormalization()(up)
up = tf.keras.layers.Activation("relu")(up)
up = tf.keras.layers.Conv2D(256,(3, 3),padding="same",kernel_regularizer=tf.keras.regularizers.l2(L2_REG),name="conv33_2",)(up)
up = tf.keras.layers.Conv2DTranspose(128, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="deconv2")(up)
up = tf.keras.layers.BatchNormalization()(up)
up = tf.keras.layers.Activation("relu")(up)
up = tf.keras.layers.Conv2D(128,(3, 3),padding="same",kernel_regularizer=tf.keras.regularizers.l2(L2_REG),name="conv33_3",)(up)
up = tf.keras.layers.Conv2DTranspose(64, kernel_size=(4,4), strides=(2,2), padding="same",
use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
kernel_initializer="he_uniform", name="features")(up)
up = tf.keras.layers.BatchNormalization()(up)
features = tf.keras.layers.Activation("relu")(up)
# Création de la heatmap
output_heatmap = tf.keras.layers.Conv2D(
64,(3, 3),
padding="same",
use_bias=False,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
name="heatmap_conv2D",
)(features)
output_heatmap = tf.keras.layers.BatchNormalization(name="heatmap_norm")(output_heatmap)
output_heatmap = tf.keras.layers.Activation("relu", name="heatmap_activ")(output_heatmap)
output_heatmap = tf.keras.layers.Conv2D(
n_labels,(1, 1),
padding="valid",
activation=tf.nn.sigmoid,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
bias_initializer=tf.constant_initializer(-np.log((1.0 - 0.1) / 0.1)),
name="heatmap",
)(output_heatmap)
return tf.keras.models.Model(inputs=out.input, outputs=output_heatmap)
# Modèle basé sur TTFNet
def GetRegressionModel_TTFNet(image_width, image_height, n_labels):
L2_REG = 1.25e-5
shape = (image_height,image_width,3)
# Charge le ResNet18
ResNet18, preprocess_input = Classifiers.get("resnet18")
base_model = ResNet18(input_shape=shape, weights="imagenet", include_top=False)
# Ajout de la régularisation L2
for layer in base_model.layers:
layer.kernel_regularizer = tf.keras.regularizers.l2()
out = tf.keras.models.model_from_json(base_model.to_json())
out.set_weights(base_model.get_weights())
c2 = tf.keras.layers.Dropout(rate=0.2)(out.get_layer("stage2_unit1_relu1").output)
c3 = tf.keras.layers.Dropout(rate=0.4)(out.get_layer("stage3_unit1_relu1").output)
c4 = tf.keras.layers.Dropout(rate=0.4)(out.get_layer("stage4_unit1_relu1").output)
c5 = tf.keras.layers.Dropout(rate=0.5)(out.get_layer("relu1").output)
p3_out = keras.layers.Conv2D(256, 3, 3, "same")(c3)
p4_out = keras.layers.Conv2D(256, 3, 3, "same")(c4)
p5_out = keras.layers.Conv2D(256, 3, 3, "same")(c5)
# Création de la heatmap
output_heatmap = tf.keras.layers.Conv2D(
64,(3, 3),
padding="same",
use_bias=False,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
name="heatmap_conv2D",
)(features)
output_heatmap = tf.keras.layers.BatchNormalization(name="heatmap_norm")(output_heatmap)
output_heatmap = tf.keras.layers.Activation("relu", name="heatmap_activ")(output_heatmap)
output_heatmap = tf.keras.layers.Conv2D(
n_labels,(1, 1),
padding="valid",
activation=tf.nn.sigmoid,
kernel_initializer=tf.keras.initializers.RandomNormal(0.01),
kernel_regularizer=tf.keras.regularizers.l2(L2_REG),
bias_initializer=tf.constant_initializer(-np.log((1.0 - 0.1) / 0.1)),
name="heatmap",
)(output_heatmap)
return tf.keras.models.Model(inputs=out.input, outputs=output_heatmap)