-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathimitation.py
36 lines (31 loc) · 1.24 KB
/
imitation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""
#################################
# Using the Imitated model by UAV to choose estimate the UE based on the queue states
Keras
GPU: Nvidia RTX 2080 Ti
OS: Ubuntu 18.04
#################################
"""
#########################################################
# import libraries
import numpy as np
from keras.models import load_model
from expert import direction_policy_expert
#########################################################
# General Parameters
model_queue = load_model('Output/Models/model_queue_5_layers_[40, 80, 160, 80, 5]_units.model')
#########################################################
# Function definition
def action_imitation(state, num_ue):
"""
This function chooses the UE based on imitated and trained model based on the expert's knowledge.
:param state: State of the problem based on queues' length
:param num_ue: Number of UEs
:return: decision on actions for UE selection and mobility direction
"""
x_queue_vec = state[0:num_ue]
dist = state[num_ue:2 * num_ue]
dirc = state[2 * num_ue:3 * num_ue]
a1 = np.squeeze(model_queue.predict_classes(x_queue_vec.reshape((1, num_ue))))
a2 = direction_policy_expert(a1, dist, dirc)
return a1, a2