Skip to content

Latest commit

 

History

History
39 lines (23 loc) · 1.7 KB

README.md

File metadata and controls

39 lines (23 loc) · 1.7 KB

Meta-Learning for Better Learning: Using Meta-Learning Methods to Automatically Label Exam Questions with Detailed Learning Objectives

This repository contains the code and material for the Meta-Learning for Better Learning: Using Meta-Learning Methods to Automatically Label Exam Questions with Detailed Learning Objectives paper.

Dataset and Benchmark

The files for the collected learning objective + course question dataset can be found in the following directory names: OpenStax Dataset, Principles of Chemistry 3rd edition, and Chem 31A.

Functions for loading the respective files are provided in the util.py file.

To access the benchmark datasets, see the openstax_dataset.py file.

Training a ProtoTransformer

Use the trainer.py to train a classifier on the 2-way k-shot classification task of labeling course questions with learning objectives.

To see parameters for the training script, run python trainer.py -h

A template training run is provided below: python trainer.py --log_dir <OUTPUT DIRECTORY> --model_size <MODEL SIZE (e.g. tiny, bert)> --num_support <K> --num_query <1-10> --batch_size <BATCH SIZE> --num_workers <1-8> --num_epochs <1-10> --learning_rate <~1e-5>

Testing on Held-Out Test Set

The trainer.py file provides a test option as follows: python trainer.py --log_dir <OUTPUT_DIRECTORY> ... --test

One can use the --split flag to choose between the test, train, and val datasets.

Testing on Held-Out Course

Provide a course name, along with the --test flag, to test the classifier on a particular course: python trainer.py --log_dir <OUTPUT_DIRECTORY> ... --test --course_name <COURSE_NAME (e.g. Chem 31A)>

Testing a GPT-3 Classifier

Coming soon!