-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfidf.py
125 lines (94 loc) · 4.44 KB
/
tfidf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import math
# calculate idf for each term
def calculate_idf(collection_size, term): # term is object
return math.log10(collection_size / len(term.freq_in_each_doc)) # N/num of docs containing t
# calculate term frequency (tf) for a given term. term is object
def calculate_tf_doc(term, doc):
return term.freq_in_each_doc.get(str(doc.id))
def calculate_tf_query(term, query): # here term is string
frequency = 0
for word in query:
if word == term:
frequency += 1
return frequency
def magnitude(vector):
return math.sqrt(sum(pow(element, 2) for element in vector))
# calculate cos similarity
def cos_similarity(query_vector, doc_scores_vector):
# return cos_score between query and doc
# find terms (that are in query) in doc and dont iterate over all term in doc
numerator = 0
for term in query_vector:
if term in doc_scores_vector:
numerator += (query_vector.get(term) * doc_scores_vector.get(term))
cos_score = numerator / (magnitude(list(query_vector.values())) * magnitude(list(doc_scores_vector.values())))
return cos_score
def extract_term_scores_from_docs(term, dict_id_docs): # term is object
doc_scores = {}
term_docs = list(term.docs_lists())
for doc_id in term_docs:
doc_scores[dict_id_docs.get(doc_id)] = dict_id_docs.get(doc_id).term_scores.get(term.string)
return doc_scores
# create champion list
def add_champion_list(dict_id_docs, terms, r=300):
# for each term we should consider only r most important docs
for term in terms: # term is string
terms[term].champion_list = extract_term_scores_from_docs(terms[term], dict_id_docs)
# sort it
terms[term].champion_list = dict(sorted(terms[term].champion_list.items(), key=lambda item: item[1], reverse=True))
# take first r of it
terms[term].champion_list = {i: terms[term].champion_list[i] for i in list(terms[term].champion_list)[:r]}
return terms
def extract_champion_from_query(query, terms_with_champion):
champion_list = set()
for word in query:
champion_list.update(terms_with_champion[word].champion_list)
return list(champion_list)
def intersection(lst1, lst2):
# Use of hybrid method
temp = set(lst2)
lst3 = [value for value in lst1 if value in temp]
return lst3
# return docs that have at least one word in common with query
def index_elimination(query, collection):
docs_after_elimination = []
for doc in collection:
for term in query:
if term in doc.content:
docs_after_elimination.append(doc)
break
return docs_after_elimination
def create_id_docs_dict(collection):
dict_id_docs = {}
for doc in collection:
dict_id_docs[str(doc.id)] = doc
return dict_id_docs
def tf_idf(query, terms, collection):
seen_terms_query = []
query_scores = {}
for term in query: # here term is string
if term not in seen_terms_query: # avoid calculating tfidf more than one time for each term in doc
query_scores[term] = (1 + math.log10(calculate_tf_query(term, query))) * calculate_idf(len(collection), terms.get(term))
seen_terms_query.append(term)
for doc in collection: # create a term score vector for each doc
seen_terms = []
for term in doc.content: # here term is string
if term not in seen_terms: # avoid calculating tfidf more than one time for each term in doc
doc.term_scores[term] = (1 + math.log10(calculate_tf_doc(terms.get(term), doc)))
seen_terms.append(term)
dict_id_docs = create_id_docs_dict(collection)
# eliminating docs with no mutual word with query (for faster calculation)
docs_after_elimination = index_elimination(query, collection)
terms_with_champion = add_champion_list(dict_id_docs, terms)
champion_list = extract_champion_from_query(query, terms_with_champion)
# intersect champion list and docs after elimination
docs_to_search = intersection(champion_list, docs_after_elimination)
similarities = {} # {doc: similarity, ...}
for doc in docs_to_search:
similarities[doc] = cos_similarity(query_scores, doc.term_scores)
# sort scores dictionary
similarities = dict(sorted(similarities.items(), key=lambda item: item[1], reverse=True))
# return top K docs
k = 5
first_K_pairs = {i: similarities[i] for i in list(similarities)[:k]}
return first_K_pairs