-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickSelect_215_kthLargestElementInArray.py
101 lines (74 loc) · 3.04 KB
/
quickSelect_215_kthLargestElementInArray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
https://leetcode.com/problems/kth-largest-element-in-an-array/
https://www.youtube.com/watch?v=XEmy13g1Qxc&list=PLot-Xpze53lfOdF3KwpMSFEyfE77zIwiP&index=61
leetcode 215
medium
quick select
input : an integer array nums and an integer k
output: return the kth largest element in the array.
Note that it is the kth largest element in the sorted order, not the kth distinct element.
Can you solve it without sorting?
Logic :
-largest in sorted array not distinct so array can have duplicates
approach 1 :
-sort : o(nlogn) and then return the kth largest
i.e. index length-k
approach 2 : best for worst case : heap
use max heap
-heapify (turn into a heap) in o(n) time
-pop k times o(logn) time once -> klogn
so better than sorting : o(n + klogn)
approach 3 : o(n) for avg case [o(n^2) in worst case]
-select pivot
-from beginning of array : compare each ele with pivot,
-place ele in left half or right half
-in-place
-partition the array, partitions not in sorted order
-so partition1(everything <pivot), pivot, partition2
-so we know target value is in partition2
-quick sort the partition2 : so time : n + n/2 + n/4 + ... = o(2n) = o(n) instead of o(nlogn) for avg case
return kth largest ele
Time Complexity:
"""
# Solution: Sorting
# Time Complexity:
# - Best Case: O(n)
# - Average Case: O(n*log(n))
# - Worst Case:O(n*log(n))
# Extra Space Complexity: O(n)
from typing import List
class Solution1: #sorting solution
def findKthLargest(nums: List[int], k: int) -> int:
nums.sort()
return nums[len(nums) - k]
# Solution: QuickSelect
# Time Complexity:
# - Best Case: O(n)
# - Average Case: O(n)
# - Worst Case: O(n^2)
# Extra Space Complexity: O(1)
# recursive quick select
# left, right : pointers that decide the portion of the array on which quick select to apply
def partition(nums: List[int], left: int, right: int) -> int:
pivot, fill = nums[right], left #pivot : right most value since easy, and fill pointer at left most value
for i in range(left, right):
if nums[i] <= pivot: #swap with fill index ele if <=
nums[fill], nums[i] = nums[i], nums[fill] #swap in python
fill += 1
nums[fill], nums[right] = nums[right], nums[fill] #swap fill index value with pivot value
return fill
def findKthLargest(nums: List[int], k: int) -> int:
k = len(nums) - k
left, right = 0, len(nums) - 1
while left < right:
pivot = partition(nums, left, right)
if pivot < k: #if k > p then look into right portion of array, so change left pointer, right pointer remains same
left = pivot + 1
elif pivot > k: #i.e. k < p then run quick select on left portion of the array
# left pointer remains the same, right gets shifted
right = pivot - 1
else: #if p exactly = k then p is the kth largest ele, return it
break
return nums[k]
print (findKthLargest([3,2,1,5,6,4], 2))
print (findKthLargest([3,2,3,1,2,4,5,5,6], 4))