-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage_Classifier_project.py
135 lines (62 loc) · 1.29 KB
/
Image_Classifier_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import numpy as np
from matplotlib import pyplot as ply
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
get_ipython().run_line_magic('matplotlib', 'inline')
# In[6]:
data=pd.read_csv('emnist.csv')
data.head()
# In[11]:
data.loc[3]
# In[24]:
#extracting the data
d=data.iloc[2,1:].values
# In[32]:
#reshaping the extracted data
d=d.reshape(28,28).astype('uint8')
ply.imshow(d)
# In[34]:
#separating label and pixels
df_x=data.iloc[:,1:]
df_y=data.iloc[:,0]
# In[36]:
#train and test the datas
x_train,x_test,y_train,y_test=train_test_split(df_x,df_y,test_size=0.2,random_state=4)
# In[38]:
#check data
x_train.head()
# In[40]:
y_train.head()
# In[42]:
#calling rf classifier
rf=RandomForestClassifier(n_estimators=100)
# In[45]:
#fit the model
rf.fit(x_train,y_train)
# In[47]:
#prediction test
pred=rf.predict(x_test)
# In[49]:
pred
# In[51]:
#check prediction accuracy
s=y_test.values
#calculate no of correct predictions
count=0
for i in range(len(pred)):
if pred[i]==s[i]:
count=count+1
# In[53]:
count
# In[55]:
#total values which was predicted
len(pred)
# In[59]:
len(pred)
# In[60]:
#accuracy
2785/3760