forked from kappazeta/km_predict
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharchitectures.py
522 lines (432 loc) · 26.5 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# vim: set tabstop=8 softtabstop=0 expandtab shiftwidth=4 smarttab
# Copyright 2020 KappaZeta Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See t
# he License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from model import CMModel
class CustomPad(tf.keras.layers.Layer):
def __init__(self, stride, kernel_size, dil_size = 1):
super(CustomPad, self).__init__()
self.stride = stride
self.filter_h = kernel_size + (kernel_size - 1) * (dil_size - 1)
self.filter_w = kernel_size + (kernel_size - 1) * (dil_size - 1)
def build(self, input_shape):
input_h = input_shape[1]
input_w = input_shape[2]
if input_h % self.stride == 0:
pad_along_height = max((self.filter_h - self.stride), 0)
else:
pad_along_height = max(self.filter_h - (input_h % self.stride), 0)
if input_w % self.stride == 0:
pad_along_width = max((self.filter_w - self.stride), 0)
else:
pad_along_width = max(self.filter_w - (input_w % self.stride), 0)
self.pad_top = pad_along_height // 2 #amount of zero padding on the top
self.pad_bottom = pad_along_height - self.pad_top # amount of zero padding on the bottom
self.pad_left = pad_along_width // 2 # amount of zero padding on the left
self.pad_right = pad_along_width - self.pad_left # amount of zero padding on the right
def call(self, inputs):
#print(self.pad_top, self.pad_bottom, self.pad_left, self.pad_right)
return tf.pad(inputs, ((0,0), (self.pad_left, self.pad_right), (self.pad_top, self.pad_bottom), (0,0)), 'SYMMETRIC')
class XCeption(tf.keras.Model):
def __init__(self, input_tensor = None, input_shape = None):
super(XCeption, self).__init__()
def conv_bn(self, x, filters, kernel_size, strides=1):
x = CustomPad(stride = strides, kernel_size = kernel_size)(x)
x = tf.keras.layers.Conv2D(filters=filters,
kernel_size = kernel_size,
strides=strides,
padding = 'valid',
use_bias = False)(x)
x = tf.keras.layers.BatchNormalization()(x)
return x
def sep_bn(self, x, filters, kernel_size, strides=1):
x = CustomPad(stride = strides, kernel_size = kernel_size)(x)
x = tf.keras.layers.SeparableConv2D(filters=filters,
kernel_size = kernel_size,
strides=strides,
padding = 'valid',
use_bias = False)(x)
x = tf.keras.layers.BatchNormalization()(x)
return x
def entry_flow(self, x):
x = self.conv_bn(x, filters =32, kernel_size =3, strides=2)
x = tf.keras.layers.ReLU()(x)
x = self.conv_bn(x, filters =64, kernel_size =3, strides=1)
tensor = tf.keras.layers.ReLU()(x)
x = self.sep_bn(tensor, filters = 128, kernel_size =3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters = 128, kernel_size =3)
x = CustomPad(kernel_size=3, stride=2)(x)
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding = 'valid')(x)
tensor = self.conv_bn(tensor, filters=128, kernel_size = 1,strides=2)
x = tf.keras.layers.Add()([tensor,x])
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters =256, kernel_size=3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters =256, kernel_size=3)
x = CustomPad(kernel_size=3, stride=2)(x)
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding = 'valid')(x)
tensor = self.conv_bn(tensor, filters=256, kernel_size = 1,strides=2)
x = tf.keras.layers.Add()([tensor,x])
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters =728, kernel_size=3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters =728, kernel_size=3)
x = CustomPad(kernel_size=3, stride=2)(x)
x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding = 'valid')(x)
tensor = self.conv_bn(tensor, filters=728, kernel_size = 1,strides=2)
x = tf.keras.layers.Add()([tensor,x])
return x
def middle_flow(self, tensor):
for _ in range(8):
x = tf.keras.layers.ReLU()(tensor)
x = self.sep_bn(x, filters = 728, kernel_size = 3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters = 728, kernel_size = 3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters = 728, kernel_size = 3)
x = tf.keras.layers.ReLU()(x)
tensor = tf.keras.layers.Add()([tensor,x])
return tensor
def exit_flow(self, tensor):
x = tf.keras.layers.ReLU()(tensor)
x = self.sep_bn(x, filters = 728, kernel_size=3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters = 1024, kernel_size=3)
x = CustomPad(kernel_size=3, stride=2)(x)
x = tf.keras.layers.MaxPool2D(pool_size = 3, strides = 2, padding ='valid')(x)
tensor = self.conv_bn(tensor, filters =1024, kernel_size=1, strides =2)
x = tf.keras.layers.Add()([tensor,x])
x = self.sep_bn(x, filters = 1536, kernel_size=3)
x = tf.keras.layers.ReLU()(x)
x = self.sep_bn(x, filters = 2048, kernel_size=3)
x = tf.keras.layers.GlobalAvgPool2D()(x)
x = tf.keras.layers.Dense(units = 1000, activation = 'softmax')(x)
return x
def call(self, x):
x = self.entry_flow(x)
x = self.middle_flow(x)
output = self.exit_flow(x)
return output
def build_graph(self, input_tensor):
model = tf.keras.Model(inputs=input_tensor, outputs=self.call(input_tensor))
return model
class Unet(CMModel):
"""
Unet
"""
def __init__(self):
super(Unet, self).__init__("Unet")
def construct(self, width, height, num_channels, num_categories, layers=False, units=False, pretrained_weights=False):
"""
Construct the model.
:param width: Width of a single sample (must be an odd number).
:param height: Height of a single sample (must be an odd number).
:param num_channels: Number of features used.
:param num_categories: Number of output classes.
"""
# For symmetrical neighbourhood, width and height must be odd numbers.
self.input_shape = (width, height, num_channels)
self.output_shape = (num_categories,)
if units:
n_filters = units
else:
n_filters = 64
growth_factor = 2
with tf.name_scope("Model"):
inputs = tf.keras.layers.Input(self.input_shape, name='input')
conv1 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv1)
n_filters *= growth_factor
conv2 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv2)
n_filters *= growth_factor
conv3 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv3)
n_filters *= growth_factor
if layers == 5 or layers == False:
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool3)
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
drop4 = tf.keras.layers.Dropout(0.5)(conv4)
pool4 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(drop4)
n_filters *= growth_factor
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool4)
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv_middle)
drop_middle = tf.keras.layers.Dropout(0.5)(conv_middle)
n_filters //= growth_factor
up8 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(drop_middle))
merge8 = tf.keras.layers.concatenate([drop4, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge8)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv8)
n_filters //= growth_factor
elif layers == 6:
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool3)
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
pool4 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv4)
n_filters *= growth_factor
conv5 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool4)
conv5 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv5)
drop5 = tf.keras.layers.Dropout(0.5)(conv5)
pool5 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(drop5)
n_filters *= growth_factor
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool5)
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv_middle)
drop_middle = tf.keras.layers.Dropout(0.5)(conv_middle)
n_filters //= growth_factor
up7 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same',
kernel_initializer='he_normal')\
(tf.keras.layers.UpSampling2D(size=(2, 2))(drop_middle))
merge7 = tf.keras.layers.concatenate([drop5, up7], axis=3)
conv7 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge7)
conv7 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv7)
n_filters //= growth_factor
up8 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv7))
merge8 = tf.keras.layers.concatenate([conv4, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge8)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv8)
n_filters //= growth_factor
elif layers == 7:
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool3)
conv4 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
pool4 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv4)
n_filters *= growth_factor
conv5 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool4)
conv5 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv5)
pool5 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(conv5)
n_filters *= growth_factor
conv6 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool5)
conv6 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv6)
drop6 = tf.keras.layers.Dropout(0.5)(conv6)
pool6 = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(drop6)
n_filters *= growth_factor
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool6)
conv_middle = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv_middle)
drop_middle = tf.keras.layers.Dropout(0.5)(conv_middle)
n_filters //= growth_factor
up7 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(drop_middle))
merge7 = tf.keras.layers.concatenate([drop6, up7], axis=3)
conv7 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
n_filters //= growth_factor
up8_1 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv7))
merge8_1 = tf.keras.layers.concatenate([conv5, up8_1], axis=3)
conv8_1 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8_1)
conv8_1 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8_1)
n_filters //= growth_factor
up8 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv8_1))
merge8 = tf.keras.layers.concatenate([conv4, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge8)
conv8 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv8)
n_filters //= growth_factor
up9 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv8))
merge9 = tf.keras.layers.concatenate([conv3, up9], axis=3)
conv9 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
n_filters //= growth_factor
up10 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv9))
merge10 = tf.keras.layers.concatenate([conv2, up10], axis=3)
conv10 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge10)
conv10 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10)
n_filters //= growth_factor
up11 = tf.keras.layers.Conv2D(n_filters, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv10))
merge11 = tf.keras.layers.concatenate([conv1, up11], axis=3)
conv11 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(
merge11)
conv11 = tf.keras.layers.Conv2D(n_filters, 3, activation='relu', padding='same', kernel_initializer='he_normal')(
conv11)
conv11 = tf.keras.layers.Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(
conv11)
conv12 = tf.keras.layers.Conv2D(num_categories, (1, 1), activation='sigmoid')(conv11)
self.model = tf.keras.Model(inputs, conv12)
#self.model.summary()
if pretrained_weights:
self.model.load_weights(pretrained_weights)
return self.model
class DeepLab(CMModel):
"""
DeepLab
"""
def __init__(self):
super(DeepLab, self).__init__("DeepLab")
def construct(self, width, height, num_channels, num_categories, layers=False, units=False, pretrained_weights=False):
"""
Construct the model.
:param width: Width of a single sample (must be an odd number).
:param height: Height of a single sample (must be an odd number).
:param num_channels: Number of features used.
:param num_categories: Number of output classes.
"""
# For symmetrical neighbourhood, width and height must be odd numbers.
self.input_shape = (width, height, num_channels)
self.output_shape = (num_categories,)
n_filters = 64
with tf.name_scope('Model'):
inputs = tf.keras.layers.Input(self.input_shape, name='input')
# only for Xception
#x_padding = tf.keras.layers.ZeroPadding2D(padding=(2,2))(inputs)
# ResNet50
#resnet50 = tf.keras.applications.ResNet50(include_top = False, input_tensor = inputs, weights = None)
# XCeption
resnet50 = tf.keras.applications.Xception(include_top = False, input_tensor = inputs, weights = None)
# ResNet101
#resnet101 = tf.keras.applications.ResNet101V2(include_top = False, input_tensor = inputs, weights = None)
# ResNet101
#x = resnet101.get_layer('conv4_block22_1_relu').output
# ResNet50
#x = resnet50.get_layer('conv4_block6_2_relu').output
# XCeption
x = resnet50.get_layer('block13_sepconv2_bn').output
x = self.ASPP(x)
input_a = tf.keras.layers.UpSampling2D(size = (width // 4 // x.shape[1], height // 4 // x.shape[2]),
interpolation = 'bilinear')(x)
# XCeption
input_b = resnet50.get_layer('block3_sepconv2_bn').output
# Resnet 50
#input_b = resnet50.get_layer('conv2_block3_2_relu').output
# Resnet 101
#input_b = resnet101.get_layer('conv2_block2_1_relu').output
input_b = self.convolutional_block(input_b, num_filters = 48, kernel_size = 1)
x = tf.keras.layers.Concatenate(axis = -1)([input_a, input_b])
x = self.convolutional_block(x)
x = self.convolutional_block(x)
x = tf.keras.layers.UpSampling2D(size = (width // x.shape[1], height // x.shape[2]), interpolation = 'bilinear')(x)
outputs = tf.keras.layers.Conv2D(num_categories, activation = 'softmax', kernel_size = (1,1), padding = 'same')(x)
self.model = tf.keras.Model(inputs, outputs)
if pretrained_weights:
print("Loading pretrained weights...")
self.model.load_weights(pretrained_weights)
# for layer in self.model.layers[:142]:
# layer.trainable = False
return self.model
def convolutional_block(self, input_, num_filters = 256, kernel_size = 3, dilation_rate = 1, padding = 'same',
use_bias = False):
conv_x = tf.keras.layers.Conv2D(num_filters, kernel_size = kernel_size, dilation_rate = dilation_rate, padding = padding, use_bias = use_bias, kernel_initializer = 'he_normal')(input_)
x = tf.keras.layers.BatchNormalization()(conv_x)
x = tf.nn.relu(x)
return x
#return tf.keras.layers.Dropout(.7)(x)
def ASPP(self, input_):
dims = input_.shape
x = tf.keras.layers.AveragePooling2D(pool_size = (dims[-3], dims[-2]))(input_)
x = self.convolutional_block(x, kernel_size = 1, use_bias = True)
out_pool = tf.keras.layers.UpSampling2D(size = (dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation =
'bilinear')(x)
out_1 = self.convolutional_block(input_, kernel_size = 1, dilation_rate = 1)
out_6 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 6)
out_12 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 12)
out_18 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 18)
x = tf.keras.layers.Concatenate(axis = -1)([out_pool, out_1, out_6, out_12, out_18])
output = self.convolutional_block(x, kernel_size = 1)
return output
class DeepLabv3Plus(CMModel):
"""
DeepLabv3+ Aligned
"""
def __init__(self):
super(DeepLabv3Plus, self).__init__("DeepLabv3Plus")
def construct(self, width, height, num_channels, num_categories, layers = False, units = False, pretrained_weights=False):
"""
Construct the model.
:param width: Width of a single sample (must be an odd number).
:param height: Height of a single sample (must be an odd number).
:param num_channels: Number of features used.
:param num_categories: Number of output classes.
"""
# For symmetrical neighbourhood, width and height must be odd numbers.
self.input_shape = (width,height, num_channels)
self.output_shape = (num_categories,)
with tf.name_scope('Model'):
inputs = tf.keras.layers.Input(self.input_shape, name='input')
extractor = XCeption().build_graph(inputs)
extractor.summary()
x = extractor.get_layer('batch_normalization_36').output
x = self.ASPP(x)
input_a = tf.keras.layers.UpSampling2D(size = (width // 4 // x.shape[1], height // 4 // x.shape[2]),
interpolation = 'bilinear')(x)
input_b = extractor.get_layer('batch_normalization_6').output
input_b = self.convolutional_block(input_b, num_filters = 48, kernel_size = 1)
x = tf.keras.layers.Concatenate(axis = -1)([input_a, input_b])
x = self.convolutional_block(x)
x = self.convolutional_block(x)
x = tf.keras.layers.UpSampling2D(size = (width // x.shape[1], height // x.shape[2]), interpolation =
'bilinear')(x)
outputs = tf.keras.layers.Conv2D(num_categories, activation = 'softmax', kernel_size = (1,1), padding = 'valid')(x)
self.model = tf.keras.Model(inputs =[inputs], outputs = [outputs])
if pretrained_weights:
self.model.load_weights(pretrained_weights)
self.model.summary()
return self.model
def convolutional_block(self, input_, num_filters = 256, kernel_size = 3, dilation_rate = 1, padding = 'valid', strides = 1, use_bias = False):
pad_x = CustomPad(stride = strides, kernel_size = kernel_size, dil_size = dilation_rate)(input_)
conv_x = tf.keras.layers.Conv2D(num_filters, kernel_size = kernel_size, dilation_rate = dilation_rate, padding =
padding, use_bias = use_bias, kernel_initializer = 'he_normal')(pad_x)
x = tf.keras.layers.BatchNormalization()(conv_x)
return tf.nn.relu(x)
def ASPP(self, input_):
dims = input_.shape
x = tf.keras.layers.AveragePooling2D(pool_size = (dims[-3], dims[-2]))(input_)
x = self.convolutional_block(x, kernel_size = 1, use_bias = True)
out_pool = tf.keras.layers.UpSampling2D(size = (dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation =
'bilinear')(x)
out_1 = self.convolutional_block(input_, kernel_size = 1, dilation_rate = 1)
out_6 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 6)
out_12 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 12)
out_18 = self.convolutional_block(input_, kernel_size = 3, dilation_rate = 18)
x = tf.keras.layers.Concatenate(axis = -1)([out_pool, out_1, out_6, out_12, out_18])
output = self.convolutional_block(x, kernel_size = 1)
return output
ARCH_MAP = {
"Unet" : Unet,
"DeepLab" : DeepLab,
"DeepLabv3Plus" : DeepLabv3Plus
}