forked from RSE-102/diffusion2D-testing-exercise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion2d.py
139 lines (99 loc) · 3.54 KB
/
diffusion2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Solving the two-dimensional diffusion equation
Example acquired from https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/
"""
import numpy as np
import matplotlib.pyplot as plt
class SolveDiffusion2D:
def __init__(self):
"""
Constructor of class SolveDiffusion2D
"""
# plate size, mm
self.w = None
self.h = None
# intervals in x-, y- directions, mm
self.dx = None
self.dy = None
# Number of discrete mesh points in X and Y directions
self.nx = None
self.ny = None
# Thermal diffusivity of steel, mm^2/s
self.D = None
# Initial cold temperature of square domain
self.T_cold = None
# Initial hot temperature of circular disc at the center
self.T_hot = None
# Timestep
self.dt = None
def initialize_domain(self, w=10., h=10., dx=0.1, dy=0.1):
self.w = w
self.h = h
self.dx = dx
self.dy = dy
self.nx = int(w / dx)
self.ny = int(h / dy)
def initialize_physical_parameters(self, d=4., T_cold=300, T_hot=700):
self.D = d
self.T_cold = T_cold
self.T_hot = T_hot
# Computing a stable time step
dx2, dy2 = self.dx * self.dx, self.dy * self.dy
self.dt = dx2 * dy2 / (2 * self.D * (dx2 + dy2))
print("dt = {}".format(self.dt))
def set_initial_condition(self):
u = self.T_cold * np.ones((self.nx, self.ny))
# Initial conditions - circle of radius r centred at (cx,cy) (mm)
r, cx, cy = 2, 5, 5
r2 = r ** 2
for i in range(self.nx):
for j in range(self.ny):
p2 = (i * self.dx - cx) ** 2 + (j * self.dy - cy) ** 2
if p2 < r2:
u[i, j] = self.T_hot
return u.copy()
def do_timestep(self, u_nm1):
u = u_nm1.copy()
dx2 = self.dx * self.dx
dy2 = self.dy * self.dy
# Propagate with forward-difference in time, central-difference in space
u[1:-1, 1:-1] = u_nm1[1:-1, 1:-1] + self.D * self.dt * (
(u_nm1[2:, 1:-1] - 2 * u_nm1[1:-1, 1:-1] + u_nm1[:-2, 1:-1]) / dx2
+ (u_nm1[1:-1, 2:] - 2 * u_nm1[1:-1, 1:-1] + u_nm1[1:-1, :-2]) / dy2)
return u.copy()
def create_figure(self, fig, u, n, fignum):
fignum += 1
ax = fig.add_subplot(220 + fignum)
im = ax.imshow(u.copy(), cmap=plt.get_cmap('hot'), vmin=self.T_cold, vmax=self.T_hot)
ax.set_axis_off()
ax.set_title('{:.1f} ms'.format(n * self.dt * 1000))
return fignum, im
def output_figure(fig, im):
fig.subplots_adjust(right=0.85)
cbar_ax = fig.add_axes([0.9, 0.15, 0.03, 0.7])
cbar_ax.set_xlabel('$T$ / K', labelpad=20)
fig.colorbar(im, cax=cbar_ax)
plt.show()
def main():
DiffusionSolver = SolveDiffusion2D()
DiffusionSolver.initialize_domain()
DiffusionSolver.initialize_physical_parameters()
u0 = DiffusionSolver.set_initial_condition()
# Number of timesteps
nsteps = 101
# Output 4 figures at these timesteps
n_output = [0, 10, 50, 100]
fig_counter = 0
fig = plt.figure()
im = None
# Time loop
for n in range(nsteps):
u = DiffusionSolver.do_timestep(u0)
# Create figure
if n in n_output:
fig_counter, im = DiffusionSolver.create_figure(fig, u, n, fig_counter)
u0 = u.copy()
# Plot output figures
output_figure(fig, im)
if __name__ == "__main__":
main()