-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
31 lines (27 loc) · 1.17 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def positional_loss(offset_parameters, targets, weights):
# parameters of bivariate distribution
# mu1_hat, mu2_hat, sigma1_hat, sigma2_hat, rho_hat = offset_parameters
mu1, mu2, sigma1, sigma2, rho = offset_parameters
x1, x2 = targets
z = ((x1 - mu1) / sigma1)**2 + ((x2 - mu2) / sigma2)**2 - \
2 * rho * (x1 - mu1) * (x2 - mu2) / (sigma1 * sigma2)
# rho_dash = (1 - rho**2)
bivariate_gaussian_exp = z / (2 * ((1 - rho**2)))
n = torch.exp(-bivariate_gaussian_exp) / \
(2 * np.pi * sigma1 * sigma2 * torch.sqrt((1 - rho**2)))
# loss function for element at time t
eps = np.finfo(float).eps
elementwise_loss = - \
torch.log(torch.sum(weights * n, dim=1) + eps) # (seq_length-1)
total_loss = torch.sum(elementwise_loss, dim=0)
return total_loss
def eos_loss(eos_prob, eos_target):
eps = np.finfo(float).eps
elementwise_loss = - (torch.log(eos_prob + eps) * eos_target +
torch.log(1 - eos_prob + eps) * (1 - eos_target))
total_loss = torch.sum(elementwise_loss, dim=0)
return total_loss