-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDenseNet_layers.py
105 lines (91 loc) · 4.89 KB
/
DenseNet_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
# This implementation is based on the DenseNet-BC implementation in torchvision
# https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from SNlayers import SNConv2d, SNLinear, MeanSpectralNorm
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module("norm1", nn.BatchNorm2d(num_input_features)),
self.add_module("relu1", nn.ReLU(inplace=True)),
self.add_module(
"conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
),
self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module("relu2", nn.ReLU(inplace=True)),
self.add_module(
"conv2", nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _SNDenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_SNDenseLayer, self).__init__()
self.add_module("relu1", nn.ReLU(inplace=True)),
self.add_module(
"conv1", SNConv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
),
self.add_module("relu2", nn.ReLU(inplace=True)),
self.add_module(
"conv2", SNConv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_SNDenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _MSNDenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_MSNDenseLayer, self).__init__()
self.add_module("norm1", MeanSpectralNorm(num_input_features)),
self.add_module("relu1", nn.ReLU(inplace=True)),
self.add_module(
"conv1", SNConv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
),
self.add_module("norm2", MeanSpectralNorm(bn_size * growth_rate)),
self.add_module("relu2", nn.ReLU(inplace=True)),
self.add_module(
"conv2", SNConv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_MSNDenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module("norm", nn.BatchNorm2d(num_input_features))
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("conv", nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))
class _SNTransition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_SNTransition, self).__init__()
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("conv", SNConv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))
class _MSNTransition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_MSNTransition, self).__init__()
self.add_module("norm", MeanSpectralNorm(num_input_features))
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("conv", SNConv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module("denselayer%d" % (i + 1), layer)