-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
125 lines (99 loc) · 5.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torch.nn.functional as F
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda" if USE_CUDA else "cpu")
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = embedding
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
def forward(self, input_seq, input_lengths, hidden=None):
embedded = self.embedding(input_seq)
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
outputs, hidden = self.gru(packed, hidden) # output: (seq_len, batch, hidden*n_dir)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs)
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:] # Sum bidirectional outputs (1, batch, hidden)
return outputs, hidden
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(1, hidden_size))
def forward(self, hidden, encoder_outputs):
# hidden [1, 64, 512], encoder_outputs [14, 64, 512]
max_len = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
# Create variable to store attention energies
attn_energies = torch.zeros(batch_size, max_len) # B x S
attn_energies = attn_energies.to(device)
# For each batch of encoder outputs
for b in range(batch_size):
# Calculate energy for each encoder output
for i in range(max_len):
attn_energies[b, i] = self.score(hidden[:, b], encoder_outputs[i, b].unsqueeze(0))
# Normalize energies to weights in range 0 to 1, resize to 1 x B x S
return F.softmax(attn_energies, dim=1).unsqueeze(1)
def score(self, hidden, encoder_output):
# hidden [1, 512], encoder_output [1, 512]
if self.method == 'dot':
energy = hidden.squeeze(0).dot(encoder_output.squeeze(0))
return energy
elif self.method == 'general':
energy = self.attn(encoder_output)
energy = hidden.squeeze(0).dot(energy.squeeze(0))
return energy
elif self.method == 'concat':
energy = self.attn(torch.cat((hidden, encoder_output), 1))
energy = self.v.squeeze(0).dot(energy.squeeze(0))
return energy
class LuongAttnDecoderRNN(nn.Module):
def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
super(LuongAttnDecoderRNN, self).__init__()
# Keep for reference
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# Define layers
self.embedding = embedding
self.embedding_dropout = nn.Dropout(dropout)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
# Choose attention model
if attn_model != 'none':
self.attn = Attn(attn_model, hidden_size)
def forward(self, input_seq, last_hidden, encoder_outputs):
# Note: we run this one step at a time
# Get the embedding of the current input word (last output word)
embedded = self.embedding(input_seq)
embedded = self.embedding_dropout(embedded) #[1, 64, 512]
if(embedded.size(0) != 1):
raise ValueError('Decoder input sequence length should be 1')
# Get current hidden state from input word and last hidden state
rnn_output, hidden = self.gru(embedded, last_hidden)
# Calculate attention from current RNN state and all encoder outputs;
# apply to encoder outputs to get weighted average
attn_weights = self.attn(rnn_output, encoder_outputs) #[64, 1, 14]
# encoder_outputs [14, 64, 512]
context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) #[64, 1, 512]
# Attentional vector using the RNN hidden state and context vector
# concatenated together (Luong eq. 5)
rnn_output = rnn_output.squeeze(0) #[64, 512]
context = context.squeeze(1) #[64, 512]
concat_input = torch.cat((rnn_output, context), 1) #[64, 1024]
concat_output = torch.tanh(self.concat(concat_input)) #[64, 512]
# Finally predict next token (Luong eq. 6, without softmax)
output = self.out(concat_output) #[64, output_size]
# Return final output, hidden state, and attention weights (for visualization)
return output, hidden, attn_weights