Skip to content

Latest commit

 

History

History
82 lines (58 loc) · 8.71 KB

README.md

File metadata and controls

82 lines (58 loc) · 8.71 KB

共情对话论文集合

目录:[TOC]
Conference Papers
Survey
论文学习笔记

还有一个更全的论文网址 https://github.com/Sahandfer/EMPaper/blob/master/README.md

Conference Papers

  • EMNLP22 Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning, 2022. [paper] [code]
  • NAACL22 Mitigating Toxic Degeneration with Empathetic Data: Exploring the Relationship Between Toxicity and Empathy, 2022. [paper]
  • NAACL22 EmpHi: Generating Empathetic Responses with Human-like Intents, 2022. [paper] [code]
  • Empathetic Response Generation with State Management, 2022. [paper] [code]
  • IJCAI22 Control Globally, Understand Locally: A Global-to-Local Hierarchical Graph Network for Emotional Support Conversation, 2022. [paper]
  • ACL22 MISC: A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation, 2022. [paper] [code]
  • AAAI22 CEM: Commonsense-aware Empathetic Response Generation, 2021. [paper] [code]
  • AAAI22 Knowledge Bridging for Empathetic Dialogue Generation, 2021. [paper] [code]
  • EMNLP21 Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations, 2021. [paper] [code]
  • EMNLP21 Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes, 2021. [paper] [code]
  • EMNLP21 Constructing Emotion Consensus and Utilizing Unpaired Data for Empathetic Dialogue Generation, 2021. [paper]
  • Exemplars-guided Empathetic Response Generation Controlled by the Elements of Human Communication, 2021. [paper] [code]
  • WWW21 Towards facilitating empathic conversations in Online Mental Health Support: A Reinforcement Learning Approach, 2021. [paper] [code]
  • EMNLP20 MIME: MIMicking Emotions for Empathetic Response Generation, 2020. [paper] [code]
  • COLING20 EmpDG: Multi-resolution Interactive Empathetic Dialogue Generation, 2020 [paper] [code]
  • EMNLP19 MOEL: Mixture of empathetic listeners, 2019. [paper] [code]
  • ACL21 Towards Emotional Support Dialog Systems, 2021. [paper] [code] - 最开始提出情感支持的论文,相当于开辟了新赛道,数据量比共情对话少了一些,但是轮次多了很多,是清华和心理所合作的新数据集。
  • ACL21 PsyQA: A Chinese Dataset for Generating Long Counseling Text for Mental Health Support, 2021. [paper] [code]
  • COLING20 A Taxonomy of Empathetic Response Intents in Human Social Conversations, 2020. [paper] [code]
  • ACL19 Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset, 2019. [paper] [code] - 最开始提出Empathetic的论文
  • EMNLP20 A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support, 2020. [paper] [code] - 提出了几种共情对话的评价方式,但是目前影响力还不大。

Survey

  • Empathetic Conversational Systems: A Review of Current Advances, Gaps, and Opportunities, 2022. [paper]
  • ACL22 The AI Doctor Is In: A Survey of Task-Oriented Dialogue Systems for Healthcare Applications, 2022. [paper]
  • The Effectiveness of Artificial Intelligence Conversational Agents in Health Care: Systematic Review, 2020. [paper]

论文学习笔记

EMNLP2022-前瞻性启发式-动态建模-Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning


2022-10-25
title: Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning,EMNLP 2022[paper] [code]

Authers: Yi Cheng1∗ , Wenge Liu2∗ , Wenjie Li1† , Jiashuo Wang1, Ruihui Zhao3, Bang Liu4,Xiaodan Liang5, Yefeng Zheng3

institute: 1-Hong Kong Polytechnic University;2-Baidu Inc., Beijing, China; 3-Tencent Jarvis Lab;4-RALI & Mila, Université de Montréal; 5-Sun Yat-sen University.

Topic: Emotional Support Conversation

Motivation: 提供情感支持(ES)以安抚情绪困扰的人是社交互动中的一项基本能力。现有的关于构建ES会话系统的研究大多只考虑与用户的单回合交互,这过于简化了。相比之下,多回合情感支持对话系统可以更有效地提供情感支持,但面临着一些新的技术挑战,包括:i)如何进行支持策略规划,以获得最佳支持效果;ii)如何动态地建模用户的状态。本文提出了一个名为MultiESC的新系统来解决这些问题。

Details: 应用背景/面向对象是多轮次的情感支持对话(ESC, Emotional Support Conversation),作者想在其中构建一种前瞻性启发式并能动态建模的算法。对于策略规划,作者从A*搜索算法中汲取灵感,提出了前瞻性启发式算法,以估计使用特定策略后的未来用户反馈,这有助于选择能够产生最佳长期效果的策略。对于用户状态建模,MultiESC专注于捕捉用户的微妙情绪表达,并了解其情绪原因。

Experiments

  1. 数据集 Experimental dataset: ESConv,每个对话平均29.8个语句,共8个策略(例如,提问、反映情感和自我表露)。

  2. NRC VSD词典大小20000英文单词,三个维度(pleased-displeased, excited-calm, dominant-submissive).

  3. 策略=策略得分函数中的最大值。策略得分函数=基于历史的参数g(st) +启发式预估未来用户反馈的前瞻得分h(st)×权重超参。个人理解:基于历史=概率,未来预估=数学期望。

    历史:g(st) = − log Pr(st|Ht, Ut). 已知Ut是第t轮之前所有用户状态嵌入的级联,st是策略,Ht为对话历史嵌入。Pr猜测是probability , 这个函数可能需要理解A*搜索。

    未来:h(st) = E[f(st, s>t, Ut)|st, Ht, Ut] 函数f表示连续应用st和s>t以安慰先前状态为Ut的用户之后的用户反馈得分。

  4. 话语解码器的目标是生成下一个对话xt,架构和策略序列生成器一样,只是输入序列不一样(在话语序列前加入一个策略嵌入)

  5. 实验结果:MultiESC在所有指标(流畅、共情、识别、建议)上都由于MOEL。它在整体支持效果上也优于BlenderBotJoint,尽管在流畅性方面相对较差,作者认为原因是BlenderBot关节的主干在大规模对话语料库上经过了广泛的预训练。与同样运用了启发式的“w/o lookahead”相比可以说是不相上下,所以启发式起到了很大作用。

Comments: 本文的novelty是面向多轮对话而非单轮交互,考虑的主要是(在多轮对话中)长期减少用户的情绪困扰,并提出了一种在战略规划和对话生成方面均显著优于baseline的算法MultiESC。但是文章也提到这种算法的限制limitation是无法提供个性化对话。个人思考:本文算法MultiESC对于对象的情绪分析有很好的效果,那么是否可以通过知识图谱和用户数据库进行个性化对话,然后通过语音指纹或者密码登陆来识别用户(这个涉及隐私和安全问题),但是这种个性化方法对资源要求很高。

by Wanyue Zhang