-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmain.py
218 lines (198 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
import argparse
import logging
import sys
import torch
import os
import json
# my staff
from utils.data_helper import FewShotRawDataLoader
from utils.preprocessor import make_dict, save_feature, load_feature, make_preprocessor, make_label_mask
from utils.opt import define_args, basic_args, train_args, test_args, preprocess_args, model_args, option_check
from utils.device_helper import prepare_model, set_device_environment
from utils.trainer import FewShotTrainer, SchemaFewShotTrainer, prepare_optimizer, prepare_few_shot_optimizer
from utils.tester import FewShotTester, SchemaFewShotTester
from utils.model_helper import make_model, load_model
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
stream=sys.stdout)
logger = logging.getLogger(__name__)
def get_training_data_and_feature(opt, data_loader, preprocessor):
""" prepare feature and data """
if opt.load_feature:
try:
train_features, train_label2id, train_id2label, train_trans_mat = load_feature(opt.train_path.replace('.json', '.saved.pk'))
dev_features, dev_label2id, dev_id2label, dev_trans_mat = load_feature(opt.dev_path.replace('.json', '.saved.pk'))
except FileNotFoundError:
# Not a saved feature file yet, make it
opt.load_feature = False
opt.save_feature = True
train_features, train_label2id, train_id2label, train_trans_mat, \
dev_features, dev_label2id, dev_id2label, dev_trans_mat =\
get_training_data_and_feature(opt, data_loader, preprocessor)
# restore option
opt.load_feature = True
opt.save_feature = False
else:
train_examples, train_max_len, train_max_support_size, train_trans_mat = data_loader.load_data(path=opt.train_path)
dev_examples, dev_max_len, dev_max_support_size, dev_trans_mat = data_loader.load_data(path=opt.dev_path)
train_label2id, train_id2label = make_dict(train_examples)
dev_label2id, dev_id2label = make_dict(dev_examples)
logger.info(' Finish train dev prepare dict ')
train_features = preprocessor.construct_feature(
train_examples, train_max_support_size, train_label2id, train_id2label)
dev_features = preprocessor.construct_feature(
dev_examples, dev_max_support_size, dev_label2id, dev_id2label)
logger.info(' Finish prepare train dev features ')
if opt.save_feature:
save_feature(opt.train_path.replace('.json', '.saved.pk'),
train_features, train_label2id, train_id2label, train_trans_mat)
save_feature(opt.dev_path.replace('.json', '.saved.pk'), dev_features, dev_label2id, dev_id2label, dev_trans_mat)
return train_features, train_label2id, train_id2label, train_trans_mat, \
dev_features, dev_label2id, dev_id2label, dev_trans_mat
def get_testing_data_feature(opt, data_loader, preprocessor):
""" prepare feature and data """
if opt.load_feature:
try:
test_features, test_label2id, test_id2label, test_trans_mat = \
load_feature(opt.test_path.replace('.json', '.saved.pk'))
except FileNotFoundError:
# Not a saved feature file yet, make it
opt.load_feature = False
opt.save_feature = True
test_features, test_label2id, test_id2label, test_trans_mat = \
get_testing_data_feature(opt, data_loader, preprocessor)
# restore option
opt.load_feature = True
opt.save_feature = False
else:
test_examples, test_max_len, test_max_support_size, test_trans_mat = data_loader.load_data(path=opt.test_path)
test_label2id, test_id2label = make_dict(test_examples)
logger.info(' Finish prepare test dict')
test_features = preprocessor.construct_feature(
test_examples, test_max_support_size, test_label2id, test_id2label)
logger.info(' Finish prepare test feature')
if opt.save_feature:
save_feature(opt.test_path.replace('.json', '.saved.pk'),
test_features, test_label2id, test_id2label, test_trans_mat)
return test_features, test_label2id, test_id2label, test_trans_mat
def main():
""" to start the experiment """
''' set option '''
parser = argparse.ArgumentParser()
parser = define_args(parser, basic_args, train_args, test_args, preprocess_args, model_args)
opt = parser.parse_args()
print('Args:\n', json.dumps(vars(opt), indent=2))
opt = option_check(opt)
''' device & environment '''
device, n_gpu = set_device_environment(opt)
os.makedirs(opt.output_dir, exist_ok=True)
logger.info("Environment: device {}, n_gpu {}".format(device, n_gpu))
''' data & feature '''
data_loader = FewShotRawDataLoader(debugging=opt.do_debug)
preprocessor = make_preprocessor(opt)
if opt.do_train:
train_features, train_label2id, train_id2label, train_trans_mat, \
dev_features, dev_label2id, dev_id2label, dev_trans_mat = \
get_training_data_and_feature(opt, data_loader, preprocessor)
# todo: remove the train label mask out of opt.
if opt.mask_transition:
opt.train_label_mask = make_label_mask(opt, opt.train_path, train_label2id)
opt.dev_label_mask = make_label_mask(opt, opt.dev_path, dev_label2id)
opt.train_trans_mat = [torch.Tensor(item).to(device) for item in train_trans_mat]
opt.dev_trans_mat = [torch.Tensor(item).to(device) for item in dev_trans_mat]
else:
train_features, train_label2id, train_id2label, dev_features, dev_label2id, dev_id2label = [None] * 6
if opt.mask_transition:
opt.train_label_mask = None
opt.dev_label_mask = None
if opt.do_predict:
test_features, test_label2id, test_id2label, test_trans_mat = get_testing_data_feature(opt, data_loader, preprocessor)
if opt.mask_transition:
opt.test_label_mask = make_label_mask(opt, opt.test_path, test_label2id)
opt.test_trans_mat = [torch.Tensor(item).to(device) for item in test_trans_mat]
else:
test_features, test_label2id, test_id2label = [None] * 3
if opt.mask_transition:
opt.test_label_mask = None
''' over fitting test '''
if opt.do_overfit_test:
test_features, test_label2id, test_id2label = train_features, train_label2id, train_id2label
dev_features, dev_label2id, dev_id2label = train_features, train_label2id, train_id2label
''' select training & testing mode '''
trainer_class = SchemaFewShotTrainer if opt.use_schema else FewShotTrainer
tester_class = SchemaFewShotTester if opt.use_schema else FewShotTester
''' training '''
best_model = None
if opt.do_train:
logger.info("***** Perform training *****")
training_model = make_model(opt, num_tags=len(train_label2id), trans_r=1) # trans_r is 1 for training
training_model = prepare_model(opt, training_model, device, n_gpu)
if opt.mask_transition:
training_model.label_mask = opt.train_label_mask.to(device)
if opt.upper_lr > 0: # use different learning rate for upper structure parameter
param_to_optimize, optimizer = prepare_few_shot_optimizer(opt, training_model, len(train_features))
else:
param_to_optimize, optimizer = prepare_optimizer(opt, training_model, len(train_features))
tester = tester_class(opt, device, n_gpu)
trainer = trainer_class(opt, optimizer, param_to_optimize, device, n_gpu, tester=tester)
if opt.warmup_epoch > 0:
training_model.no_embedder_grad = True
if opt.upper_lr > 0: # use different learning rate for upper structure parameter
stage_1_param_to_optimize, stage_1_optimizer = prepare_few_shot_optimizer(opt, training_model, len(train_features))
else:
stage_1_param_to_optimize, stage_1_optimizer = prepare_optimizer(opt, training_model, len(train_features))
stage_1_trainer = trainer_class(opt, stage_1_optimizer, stage_1_param_to_optimize, device, n_gpu, tester=None)
trained_model, best_dev_score, test_score = stage_1_trainer.do_train(
training_model, train_features, opt.warmup_epoch)
training_model = trained_model
training_model.no_embedder_grad = False
print('========== Stage one training finished! ==========')
trained_model, best_dev_score, test_score = trainer.do_train(
training_model, train_features, opt.num_train_epochs,
dev_features, dev_id2label, test_features, test_id2label, best_dev_score_now=0)
# decide the best model
if not opt.eval_when_train: # select best among check points
best_model, best_score, test_score_then = trainer.select_model_from_check_point(
train_id2label, dev_features, dev_id2label, test_features, test_id2label, rm_cpt=opt.delete_checkpoint)
else: # best model is selected during training
best_model = trained_model
logger.info('dev:{}, test:{}'.format(best_dev_score, test_score))
print('dev:{}, test:{}'.format(best_dev_score, test_score))
''' testing '''
if opt.do_predict:
logger.info("***** Perform testing *****")
tester = tester_class(opt, device, n_gpu)
if not best_model:
if not opt.saved_model_path:
raise ValueError("No model trained and no trained model file given!")
if os.path.isdir(opt.saved_model_path):
all_cpt_file = list(filter(lambda x: '.cpt.pl' in x, os.listdir(opt.saved_model_path)))
all_cpt_file = sorted(all_cpt_file,
key=lambda x: int(x.replace('model.step', '').replace('.cpt.pl', '')))
max_score = 0
for cpt_file in all_cpt_file:
cpt_model = load_model(os.path.join(opt.saved_model_path, cpt_file))
testing_model = tester.clone_model(cpt_model, test_id2label)
if opt.mask_transition:
testing_model.label_mask = opt.test_label_mask.to(device)
test_score = tester.do_test(testing_model, test_features, test_id2label, log_mark='test_pred')
if test_score > max_score:
max_score = test_score
logger.info('cpt_file:{} - test:{}'.format(cpt_file, test_score))
print('max_score:{}'.format(max_score))
else:
if not os.path.exists(opt.saved_model_path):
logger.info('The model is not exits')
raise ValueError('The model is not exits')
best_model = load_model(opt.saved_model_path)
if not os.path.isdir(opt.saved_model_path):
testing_model = tester.clone_model(best_model, test_id2label) # copy reusable params
if opt.mask_transition:
testing_model.label_mask = opt.test_label_mask.to(device)
test_score = tester.do_test(testing_model, test_features, test_id2label, log_mark='test_pred')
logger.info('test:{}'.format(test_score))
print('test:{}'.format(test_score))
if __name__ == "__main__":
main()