-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_gen_evaluation.py
155 lines (134 loc) · 5.63 KB
/
run_gen_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding: utf-8
import argparse
import json
from source.Evaluate.gen_eval import appearance_check
from set_config import refresh_config_file
import copy
import subprocess
from multiprocessing import Process, Queue, current_process, freeze_support, Manager
N_THREAD = 20
# ============ Args Process ==========
parser = argparse.ArgumentParser()
# parser.add_argument("-t", "--task", type=str, default='weather_labeled', help="choose task: navigate_labeled, schedule_labeled, weather_labeled, navigate, schedule, weather")
# parser.add_argument("--topx", type=int, default=5, help="select using topx of generated sentences")
# Deep Customize
parser.add_argument('--config', default='./config.json', help="specific a config file by path")
args = parser.parse_args()
# ============ Refresh Config ==========
refresh_config_file(args.config)
# ============ Settings ==========
with open(args.config, 'r') as con_f:
CONFIG = json.load(con_f)
TASK_NAME_LST = ['atis_labeled']
# TASK_NAME_LST = ['navigate_labeled', 'schedule_labeled', 'weather_labeled']
CLUSTER_METHOD_LST = ['_intent-slot', '_nc', '_leak-gan']
# CLUSTER_METHOD_LST = CONFIG['experiment']['cluster_method'] + ['_nc']
# SPLIT_RATE_LST = [1]
SPLIT_RATE_LST = [4478]
# SPLIT_RATE_LST = [515]
PAIRING_MODE_LST = ['', '_full_connect', '_circle', '_random']
INDEX_CHOICE_LST = ['', '_ni', '_nf']
TOP_X = 10
USE_METRIC = [
# "Not Appeared",
# "Total",
# "Unique",
"Unique New",
"Avg. Distance for new",
"Avg. Distance for augmented",
"Avg. Distance for source",
# 'Avg. Length',
'source_distinct_1',
'source_distinct_2',
'source_unigram',
'source_bigram',
'source_total_word',
'augmented_distinct_1',
'augmented_distinct_2',
'augmented_unigram',
'augmented_bigram',
'augmented_total_word',
'source_size',
'generated_new_size',
'augmented_size',
]
def get_file_tail(task_name, cluster_method, split_rate, pairing_mod, index_choice):
file_tail = f"{task_name}{cluster_method}{str(split_rate)}{pairing_mod}{index_choice}"
return file_tail
def gen_evaluation_thread(task_queue, done_queue):
for param in iter(task_queue.get, 'STOP'):
file_tail = get_file_tail(** param)
ret = copy.copy(param)
ret['eval_result'] = appearance_check(
result_file=CONFIG['path']["OnmtData"] + "Result/" + file_tail + '_gen_eval.log',
test_what_file=CONFIG['path']["OnmtData"] + "Result/" + file_tail + '_pred.txt',
in_what_file=CONFIG['path']["OnmtData"] + "SourceData/train_" + file_tail + '_src.txt',
top_x=TOP_X
)
done_queue.put(ret)
def format_output(result_table, output_file='./log/gen_eval_table.log'):
output_table = []
all_column_name = ['model_name']
for row_name in result_table:
temp_row = [row_name]
for task_name in result_table[row_name]:
for metric in USE_METRIC:
column_name = f"{task_name}_{metric}"
if column_name not in all_column_name:
all_column_name.append(column_name)
temp_row.append('%.2f' % (result_table[row_name][task_name][metric]))
output_table.append(temp_row)
output_table = sorted(output_table, key=lambda x:x[0])
with open(output_file, 'w') as writer:
print('\t'.join(all_column_name))
writer.write('\t'.join(all_column_name) + '\n')
for row in output_table:
writer.write('\t'.join(row) + '\n')
print('\t'.join(row))
def gen_evaluation(task_name_lst, cluster_method_lst, split_rate_lst, pairing_mode_lst, index_choice_lst):
result_table = {}
task_queue, done_queue, task_n = Queue(), Queue(), 0
for task_name in task_name_lst:
for cluster_method in cluster_method_lst:
for split_rate in split_rate_lst:
for pairing_mod in pairing_mode_lst:
for index_choice in index_choice_lst:
param = {
"task_name": task_name,
"cluster_method": cluster_method,
'split_rate': split_rate,
'pairing_mod': pairing_mod,
'index_choice': index_choice,
}
task_queue.put(param)
task_n += 1
print(task_n,'Tasks Building')
for t in range(N_THREAD):
task_queue.put('STOP')
for t in range(N_THREAD):
Process(target=gen_evaluation_thread, args=(task_queue, done_queue)).start()
print("Start multi-thread Processing")
# collect the results below
for t in range(task_n):
thread_return = done_queue.get()
# print('=== thread return ===', thread_return)
if 'no_file' in thread_return['eval_result']:
print('--- debug ---', (thread_return['eval_result']['no_file']))
pass
else:
model_name = thread_return['cluster_method'] + str(thread_return['split_rate']) + thread_return['pairing_mod'] + thread_return['index_choice']
if model_name not in result_table:
result_table[model_name] = {}
# if thread_return['task_name'] not in result_table[model_name]:
result_table[model_name][thread_return['task_name']] = thread_return['eval_result']
print(t + 1, 'task finished.')
# print(result_table)
format_output(result_table)
if __name__ == "__main__":
gen_evaluation(
task_name_lst=TASK_NAME_LST,
cluster_method_lst=CLUSTER_METHOD_LST,
split_rate_lst=SPLIT_RATE_LST,
pairing_mode_lst=PAIRING_MODE_LST,
index_choice_lst=INDEX_CHOICE_LST
)