-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathinfer_vo.py
336 lines (289 loc) · 13.2 KB
/
infer_vo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os, sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from core.networks.model_depth_pose import Model_depth_pose
from core.networks.model_flow import Model_flow
from visualizer import *
from profiler import Profiler
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pdb
from sklearn import linear_model
import yaml
import warnings
import copy
from collections import OrderedDict
warnings.filterwarnings("ignore")
def save_traj(path, poses):
"""
path: file path of saved poses
poses: list of global poses
"""
f = open(path, 'w')
for i in range(len(poses)):
pose = poses[i].flatten()[:12] # [3x4]
line = " ".join([str(j) for j in pose])
f.write(line + '\n')
print('Trajectory Saved.')
def projection(xy, points, h_max, w_max):
# Project the triangulation points to depth map. Directly correspondence mapping rather than projection.
# xy: [N, 2] points: [3, N]
depth = np.zeros((h_max, w_max))
xy_int = np.around(xy).astype('int')
# Ensure all the correspondences are inside the image.
y_idx = (xy_int[:, 0] >= 0) * (xy_int[:, 0] < w_max)
x_idx = (xy_int[:, 1] >= 0) * (xy_int[:, 1] < h_max)
idx = y_idx * x_idx
xy_int = xy_int[idx]
points_valid = points[:, idx]
depth[xy_int[:, 1], xy_int[:, 0]] = points_valid[2]
return depth
def unprojection(xy, depth, K):
# xy: [N, 2] image coordinates of match points
# depth: [N] depth value of match points
N = xy.shape[0]
# initialize regular grid
ones = np.ones((N, 1))
xy_h = np.concatenate([xy, ones], axis=1)
xy_h = np.transpose(xy_h, (1,0)) # [3, N]
#depth = np.transpose(depth, (1,0)) # [1, N]
K_inv = np.linalg.inv(K)
points = np.matmul(K_inv, xy_h) * depth
points = np.transpose(points) # [N, 3]
return points
def cv_triangulation(matches, pose):
# matches: [N, 4], the correspondence xy coordinates
# pose: [4, 4], the relative pose trans from 1 to 2
xy1 = matches[:, :2].transpose()
xy2 = matches[:, 2:].transpose() # [2, N]
pose1 = np.eye(4)
pose2 = pose1 @ pose
points = cv2.triangulatePoints(pose1[:3], pose2[:3], xy1, xy2)
points /= points[3]
points1 = pose1[:3] @ points
points2 = pose2[:3] @ points
return points1, points2
class infer_vo():
def __init__(self, seq_id, sequences_root_dir):
self.img_dir = sequences_root_dir
#self.img_dir = '/home4/zhaow/data/kitti_odometry/sampled_s4_sequences/'
self.seq_id = seq_id
self.raw_img_h = 370.0#320
self.raw_img_w = 1226.0#1024
self.new_img_h = 256#320
self.new_img_w = 832#1024
self.max_depth = 50.0
self.min_depth = 0.0
self.cam_intrinsics = self.read_rescale_camera_intrinsics(os.path.join(self.img_dir, seq_id) + '/calib.txt')
self.flow_pose_ransac_thre = 0.1 #0.2
self.flow_pose_ransac_times = 10 #5
self.flow_pose_min_flow = 5
self.align_ransac_min_samples = 3
self.align_ransac_max_trials = 100
self.align_ransac_stop_prob = 0.99
self.align_ransac_thre = 1.0
self.PnP_ransac_iter = 1000
self.PnP_ransac_thre = 1
self.PnP_ransac_times = 5
def read_rescale_camera_intrinsics(self, path):
raw_img_h = self.raw_img_h
raw_img_w = self.raw_img_w
new_img_h = self.new_img_h
new_img_w = self.new_img_w
with open(path, 'r') as f:
lines = f.readlines()
data = lines[-1].strip('\n').split(' ')[1:]
data = [float(k) for k in data]
data = np.array(data).reshape(3,4)
cam_intrinsics = data[:3,:3]
cam_intrinsics[0,:] = cam_intrinsics[0,:] * new_img_w / raw_img_w
cam_intrinsics[1,:] = cam_intrinsics[1,:] * new_img_h / raw_img_h
return cam_intrinsics
def load_images(self):
path = self.img_dir
seq = self.seq_id
new_img_h = self.new_img_h
new_img_w = self.new_img_w
seq_dir = os.path.join(path, seq)
image_dir = os.path.join(seq_dir, 'image_2')
num = len(os.listdir(image_dir))
images = []
for i in range(num):
image = cv2.imread(os.path.join(image_dir, '%.6d'%i)+'.png')
image = cv2.resize(image, (new_img_w, new_img_h))
images.append(image)
return images
def get_prediction(self, img1, img2, model, K, K_inv, match_num):
# img1: [3,H,W] K: [3,3]
#visualizer = Visualizer_debug('/home3/zhaow/TrianFlow-pytorch/vis/')
img1_t = torch.from_numpy(np.transpose(img1 / 255.0, [2,0,1])).cuda().float().unsqueeze(0)
img2_t = torch.from_numpy(np.transpose(img2 / 255.0, [2,0,1])).cuda().float().unsqueeze(0)
K = torch.from_numpy(K).cuda().float().unsqueeze(0)
K_inv = torch.from_numpy(K_inv).cuda().float().unsqueeze(0)
filt_depth_match, depth1, depth2 = model.infer_vo(img1_t, img2_t, K, K_inv, match_num)
return filt_depth_match[0].transpose(0,1).cpu().detach().numpy(), depth1[0].squeeze(0).cpu().detach().numpy(), depth2[0].squeeze(0).cpu().detach().numpy()
def process_video(self, images, model):
'''Process a sequence to get scale consistent trajectory results.
Register according to depth net predictions. Here we assume depth predictions have consistent scale.
If not, pleas use process_video_tri which only use triangulated depth to get self-consistent scaled pose.
'''
poses = []
global_pose = np.eye(4)
# The first one global pose is origin.
poses.append(copy.deepcopy(global_pose))
seq_len = len(images)
K = self.cam_intrinsics
K_inv = np.linalg.inv(self.cam_intrinsics)
for i in range(seq_len-1):
img1, img2 = images[i], images[i+1]
depth_match, depth1, depth2 = self.get_prediction(img1, img2, model, K, K_inv, match_num=5000)
rel_pose = np.eye(4)
flow_pose = self.solve_pose_flow(depth_match[:,:2], depth_match[:,2:])
rel_pose[:3,:3] = copy.deepcopy(flow_pose[:3,:3])
if np.linalg.norm(flow_pose[:3,3:]) != 0:
scale = self.align_to_depth(depth_match[:,:2], depth_match[:,2:], flow_pose, depth2)
rel_pose[:3,3:] = flow_pose[:3,3:] * scale
if np.linalg.norm(flow_pose[:3,3:]) == 0 or scale == -1:
print('PnP '+str(i))
pnp_pose = self.solve_pose_pnp(depth_match[:,:2], depth_match[:,2:], depth1)
rel_pose = pnp_pose
global_pose[:3,3:] = np.matmul(global_pose[:3,:3], rel_pose[:3,3:]) + global_pose[:3,3:]
global_pose[:3,:3] = np.matmul(global_pose[:3,:3], rel_pose[:3,:3])
poses.append(copy.deepcopy(global_pose))
print(i)
return poses
def normalize_coord(self, xy, K):
xy_norm = copy.deepcopy(xy)
xy_norm[:,0] = (xy[:,0] - K[0,2]) / K[0,0]
xy_norm[:,1] = (xy[:,1] - K[1,2]) / K[1,1]
return xy_norm
def align_to_depth(self, xy1, xy2, pose, depth2):
# Align the translation scale according to triangulation depth
# xy1, xy2: [N, 2] pose: [4, 4] depth2: [H, W]
# Triangulation
img_h, img_w = np.shape(depth2)[0], np.shape(depth2)[1]
pose_inv = np.linalg.inv(pose)
xy1_norm = self.normalize_coord(xy1, self.cam_intrinsics)
xy2_norm = self.normalize_coord(xy2, self.cam_intrinsics)
points1_tri, points2_tri = cv_triangulation(np.concatenate([xy1_norm, xy2_norm], axis=1), pose_inv)
depth2_tri = projection(xy2, points2_tri, img_h, img_w)
depth2_tri[depth2_tri < 0] = 0
# Remove negative depths
valid_mask = (depth2 > 0) * (depth2_tri > 0)
depth_pred_valid = depth2[valid_mask]
depth_tri_valid = depth2_tri[valid_mask]
if np.sum(valid_mask) > 100:
scale_reg = linear_model.RANSACRegressor(base_estimator=linear_model.LinearRegression(fit_intercept=False), min_samples=self.align_ransac_min_samples, \
max_trials=self.align_ransac_max_trials, stop_probability=self.align_ransac_stop_prob, residual_threshold=self.align_ransac_thre)
scale_reg.fit(depth_tri_valid.reshape(-1, 1), depth_pred_valid.reshape(-1, 1))
scale = scale_reg.estimator_.coef_[0, 0]
else:
scale = -1
return scale
def solve_pose_pnp(self, xy1, xy2, depth1):
# Use pnp to solve relative poses.
# xy1, xy2: [N, 2] depth1: [H, W]
img_h, img_w = np.shape(depth1)[0], np.shape(depth1)[1]
# Ensure all the correspondences are inside the image.
x_idx = (xy2[:, 0] >= 0) * (xy2[:, 0] < img_w)
y_idx = (xy2[:, 1] >= 0) * (xy2[:, 1] < img_h)
idx = y_idx * x_idx
xy1 = xy1[idx]
xy2 = xy2[idx]
xy1_int = xy1.astype(np.int)
sample_depth = depth1[xy1_int[:,1], xy1_int[:,0]]
valid_depth_mask = (sample_depth < self.max_depth) * (sample_depth > self.min_depth)
xy1 = xy1[valid_depth_mask]
xy2 = xy2[valid_depth_mask]
# Unproject to 3d space
points1 = unprojection(xy1, sample_depth[valid_depth_mask], self.cam_intrinsics)
# ransac
best_rt = []
max_inlier_num = 0
max_ransac_iter = self.PnP_ransac_times
for i in range(max_ransac_iter):
if xy2.shape[0] > 4:
flag, r, t, inlier = cv2.solvePnPRansac(objectPoints=points1, imagePoints=xy2, cameraMatrix=self.cam_intrinsics, distCoeffs=None, iterationsCount=self.PnP_ransac_iter, reprojectionError=self.PnP_ransac_thre)
if flag and inlier.shape[0] > max_inlier_num:
best_rt = [r, t]
max_inlier_num = inlier.shape[0]
pose = np.eye(4)
if len(best_rt) != 0:
r, t = best_rt
pose[:3,:3] = cv2.Rodrigues(r)[0]
pose[:3,3:] = t
pose = np.linalg.inv(pose)
return pose
def solve_pose_flow(self, xy1, xy2):
# Solve essential matrix to find relative pose from flow.
# ransac
best_rt = []
max_inlier_num = 0
max_ransac_iter = self.flow_pose_ransac_times
best_inliers = np.ones((xy1.shape[0])) == 1
pp = (self.cam_intrinsics[0,2], self.cam_intrinsics[1,2])
# flow magnitude
avg_flow = np.mean(np.linalg.norm(xy1 - xy2, axis=1))
if avg_flow > self.flow_pose_min_flow:
for i in range(max_ransac_iter):
E, inliers = cv2.findEssentialMat(xy2, xy1, focal=self.cam_intrinsics[0,0], pp=pp, method=cv2.RANSAC, prob=0.99, threshold=self.flow_pose_ransac_thre)
cheirality_cnt, R, t, _ = cv2.recoverPose(E, xy2, xy1, focal=self.cam_intrinsics[0,0], pp=pp)
if inliers.sum() > max_inlier_num and cheirality_cnt > 50:
best_rt = [R, t]
max_inlier_num = inliers.sum()
best_inliers = inliers
if len(best_rt) == 0:
R = np.eye(3)
t = np.zeros((3,1))
best_rt = [R, t]
else:
R = np.eye(3)
t = np.zeros((3,1))
best_rt = [R, t]
R, t = best_rt
pose = np.eye(4)
pose[:3,:3] = R
pose[:3,3:] = t
return pose
if __name__ == '__main__':
import argparse
arg_parser = argparse.ArgumentParser(
description="TrianFlow training pipeline."
)
arg_parser.add_argument('-c', '--config_file', default=None, help='config file.')
arg_parser.add_argument('-g', '--gpu', type=str, default=0, help='gpu id.')
arg_parser.add_argument('--mode', type=str, default='flow', help='training mode.')
arg_parser.add_argument('--traj_save_dir_txt', type=str, default=None, help='directory for saving results')
arg_parser.add_argument('--sequences_root_dir', type=str, default=None, help='directory for test sequences')
arg_parser.add_argument('--sequence', type=str, default='09', help='Test sequence id.')
arg_parser.add_argument('--pretrained_model', type=str, default=None, help='directory for loading pretrained models')
args = arg_parser.parse_args()
with open(args.config_file, 'r') as f:
cfg = yaml.safe_load(f)
cfg['dataset'] = 'kitti_odo'
# copy attr into cfg
for attr in dir(args):
if attr[:2] != '__':
cfg[attr] = getattr(args, attr)
class pObject(object):
def __init__(self):
pass
cfg_new = pObject()
for attr in list(cfg.keys()):
setattr(cfg_new, attr, cfg[attr])
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
model = Model_depth_pose(cfg_new)
model.cuda()
weights = torch.load(args.pretrained_model)
model.load_state_dict(weights['model_state_dict'])
model.eval()
print('Model Loaded.')
print('Testing VO.')
vo_test = infer_vo(args.sequence, args.sequences_root_dir)
images = vo_test.load_images()
print('Images Loaded. Total ' + str(len(images)) + ' images found.')
poses = vo_test.process_video(images, model)
print('Test completed.')
traj_txt = args.traj_save_dir_txt
save_traj(traj_txt, poses)