Skip to content

Latest commit

 

History

History

SimpleHGN

SimpleHGN[KDD 2021]

Basic Idea

  • The model extend the original graph attention mechanism in GAT by including edge type information into attention calculation.
  • At each layer, we calculate the coefficient:

$$ \alpha_{ij} = \frac{exp(LeakyReLU(a^T[Wh_i||Wh_j||W_r r_{\psi(<i,j>)}]))}{\Sigma_{k\in\mathcal{E}}{exp(LeakyReLU(a^T[Wh_i||Wh_k||W_r r_{\psi(<i,k>)}]))}}

$$

  • Residual connection including Node residual

$$ h_i^{(l)} = \sigma(\Sigma_{j\in \mathcal{N}i} {\alpha{ij}^{(l)}W^{(l)}h_j^{(l-1)}} + h_i^{(l-1)}) $$

  • where $h_i$ and $h_j$ is the features of the source and the target node. $r_{\psi(e)}$ is a $d$-dimension embedding for each edge type $\psi(e) \in T_e$.

  • and Edge residual:

$$ \alpha_{ij}^{(l)} = (1-\beta)\alpha_{ij}^{(l)}+\beta\alpha_{ij}^{(l-1)} $$

  • Finally, a multi-head attention is used.

How to run

  • Clone the Openhgnn-DGL

    # For node classification task
    python main.py -m SimpleHGN -t node_classification -d imdb4MAGNN -g 0 --use_best_config

    If you do not have gpu, set -gpu -1.

    Supported dataset
    • imdb4MAGNN

    • Number of nodes

      movie 4278
      director 2081
      actor 5257
    • Number of edges

      movie-director 4278
      movie-actor 12828
  • dblp4MAGNN

    • Number of nodes

      author 4057
      paper 14328
      term 7723
      venue 20
    • Number of edges

      author-paper 19645
      paper-term 85810
      paper-venue 14328

Performance

Task: Node classification

Evaluation metric: accuracy

Dataset HGBn-ACM HGBn-DBLP imdb4MAGNN dblp4MAGNN
Macro_f1 66.64 86.31 48.78 86.79
Micro_f1 88.40 87.24 52.25 86.75

Hyper-parameter specific to the model

You can modify the parameters[SimpleHGN] in openhgnn/config.ini.

More

Contirbutor

Yaoqi Liu[GAMMA LAB]

If you have any questions,

Submit an issue or email to [email protected].