-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun_atari_dqn.py
239 lines (213 loc) · 11 KB
/
run_atari_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from Agents.dqn_agent import DQN_Agent, DQN_C51Agent
from Agents import MultiPro
from Wrapper import wrapper_new
import numpy as np
import random
from collections import namedtuple, deque
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import gym
import argparse
import time
def evaluate( eps, frame, eval_runs=5):
"""
Makes an evaluation runs with eps 0.001
"""
reward_batch = []
for i in range(eval_runs):
state = eval_env.reset()
rewards = 0
while True:
action = agent.act(np.expand_dims(state, axis=0), 0.001, eval=True)
state, reward, done, _ = eval_env.step(action[0].item())
rewards += reward
if done:
break
reward_batch.append(rewards)
writer.add_scalar("Reward", np.mean(reward_batch), frame)
def run_random_policy(random_frames):
"""
Run env with random policy for x frames to fill the replay memory.
"""
state = eval_env.reset()
for i in range(random_frames):
action = np.random.randint(action_size)
next_state, reward, done, _ = eval_env.step(action)
agent.memory.add(state, action, reward, next_state, done)
next_state = state
if done:
state = eval_env.reset()
def run(frames=1000, eps_fixed=False, eps_frames=1e6, min_eps=0.01, eval_every=1000, eval_runs=5, worker=1):
"""Deep Q-Learning.
Params
======
frames (int): maximum number of training frames
eps_fixed (bool): training with greedy policy and noisy layer (fixed) or e-greedy policy (not fixed)
eps_frames (float): number of frames to decay epsilon exponentially
min_eps (float): minimum value of epsilon from where eps decays linear until the last frame
eval_every (int): number frames when evaluation runs are done
eval_runs (int): number of evaluation runs
"""
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
frame = 0
if eps_fixed:
eps = 0
else:
eps = 1
eps_start = 1
d_eps = eps_start - min_eps
i_episode = 1
state = envs.reset()
score = 0
for frame in range(1, frames+1):
action = agent.act(state, eps)
next_state, reward, done, _ = envs.step(action)
for s, a, r, ns, d in zip(state, action, reward, next_state, done):
agent.step(s, a, r, ns, d, writer)
state = next_state
score += reward
# linear annealing to the min epsilon value until eps_frames and from there slowly decease epsilon to 0 until the end of training
if eps_fixed == False:
eps = max(eps_start - ((frame*d_eps)/eps_frames), min_eps)
# evaluation runs
if frame % eval_every == 0 or frame == 1:
evaluate(eps, frame*worker, eval_runs)
if done.any():
scores_window.append(score) # save most recent score
scores.append(score) # save most recent score
writer.add_scalar("Average100", np.mean(scores_window), i_episode)
print('\rEpisode {}\tFrame {} \tAverage Score: {:.2f}'.format(i_episode*worker, frame*worker, np.mean(scores_window)), end="")
if i_episode % 100 == 0:
print('\rEpisode {}\tFrame {}\tAverage Score: {:.2f}'.format(i_episode*worker, frame*worker, np.mean(scores_window)))
i_episode +=1
state = envs.reset()
score = 0
return np.mean(scores_window)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-agent", type=str, choices=["dqn",
"dqn+per",
"noisy_dqn",
"noisy_dqn+per",
"dueling",
"dueling+per",
"noisy_dueling",
"noisy_dueling+per",
"c51",
"c51+per",
"noisy_c51",
"noisy_c51+per",
"duelingc51",
"duelingc51+per",
"noisy_duelingc51",
"noisy_duelingc51+per",
"rainbow" ], default="dqn", help="Specify which type of DQN agent you want to train, default is DQN - baseline!")
parser.add_argument("-env", type=str, default="PongNoFrameskip-v4", help="Name of the atari Environment, default = Pong-v0")
parser.add_argument("-frames", type=int, default=int(5e6), help="Number of frames to train, default = 5 mio")
parser.add_argument("-seed", type=int, default=1, help="Random seed to replicate training runs, default = 1")
parser.add_argument("-bs", "--batch_size", type=int, default=32, help="Batch size for updating the DQN, default = 32")
parser.add_argument("-layer_size", type=int, default=512, help="Size of the hidden layer, default=512")
parser.add_argument("-n_step", type=int, default=1, help="Multistep DQN, default = 1")
parser.add_argument("-m", "--memory_size", type=int, default=int(1e5), help="Replay memory size, default = 1e5")
parser.add_argument("-lr", type=float, default=0.00025, help="Learning rate, default = 0.00025")
parser.add_argument("-g", "--gamma", type=float, default=0.99, help="Discount factor gamma, default = 0.99")
parser.add_argument("-t", "--tau", type=float, default=1e-3, help="Soft update parameter tat, default = 1e-3")
parser.add_argument("-eps_frames", type=int, default=1000000, help="Linear annealed frames for Epsilon, default = 1mio")
parser.add_argument("-eval_every", type=int, default=50000, help="Evaluate every x frames, default = 50000")
parser.add_argument("-eval_runs", type=int, default=5, help="Number of evaluation runs, default = 5")
parser.add_argument("-min_eps", type=float, default = 0.1, help="Final epsilon greedy value, default = 0.1")
parser.add_argument("-ic", "--intrinsic_curiosity", type=int, choices=[0,1,2], default=0, help="Adding intrinsic curiosity to the extrinsic reward. 0 - only reward and no curiosity, 1 - reward and curiosity, 2 - only curiosity, default = 0")
parser.add_argument("-info", type=str, help="Name of the training run")
parser.add_argument("--fill_buffer", type=int, default=50000, help="Adding samples to the replay buffer based on a random policy, before agent-env-interaction. Input numer of preadded frames to the buffer, default = 50000")
parser.add_argument("-w", "--worker", type=int, default=1, help="Number of parallel working environments, default is 1")
parser.add_argument("-save_model", type=int, choices=[0,1], default=1, help="Specify if the trained network shall be saved or not, default is 1 - saved!")
args = parser.parse_args()
if args.agent == "rainbow":
args.n_step = 2
args.agent = "noisy_duelingc51+per"
writer = SummaryWriter("runs/"+str(args.info))
BUFFER_SIZE = args.memory_size
BATCH_SIZE = args.batch_size
GAMMA = args.gamma
TAU = args.tau
LR = args.lr
seed = args.seed
n_step = args.n_step
env_name = args.env
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using ", device)
torch.autograd.set_detect_anomaly(True)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if "-ram" in args.env or args.env == "CartPole-v0" or args.env == "LunarLander-v2":
envs = MultiPro.SubprocVecEnv([lambda: gym.make(args.env) for i in range(args.worker)])
eval_env = gym.make(args.env)
else:
envs = MultiPro.SubprocVecEnv([lambda: wrapper_new.make_env(args.env) for i in range(args.worker)])
eval_env = wrapper_new.make_env(args.env)
envs.seed(seed)
eval_env.seed(seed+1)
action_size = eval_env.action_space.n
state_size = eval_env.observation_space.shape
if not "c51" in args.agent:
agent = DQN_Agent(state_size=state_size,
action_size=action_size,
Network=args.agent,
layer_size=args.layer_size,
n_step=n_step,
BATCH_SIZE=BATCH_SIZE,
BUFFER_SIZE=BUFFER_SIZE,
LR=LR,
TAU=TAU,
GAMMA=GAMMA,
curiosity=args.intrinsic_curiosity,
worker=args.worker,
device=device,
seed=seed)
else:
agent = DQN_C51Agent(state_size=state_size,
action_size=action_size,
Network=args.agent,
layer_size=args.layer_size,
n_step=n_step,
BATCH_SIZE=BATCH_SIZE,
BUFFER_SIZE=BUFFER_SIZE,
LR=LR,
TAU=TAU,
GAMMA=GAMMA,
curiosity=args.intrinsic_curiosity,
worker=args.worker,
device=device,
seed=seed)
# adding x frames of random policy to the replay buffer before training!
if args.fill_buffer != None:
run_random_policy(args.fill_buffer)
print("Buffer size: ", agent.memory.__len__())
# set epsilon frames to 0 so no epsilon exploration
if "noisy" in args.agent:
eps_fixed = True
else:
eps_fixed = False
t0 = time.time()
final_average100 = run(frames = args.frames//args.worker, eps_fixed=eps_fixed, eps_frames=args.eps_frames//args.worker, min_eps=args.min_eps, eval_every=args.eval_every//args.worker, eval_runs=args.eval_runs, worker=args.worker)
t1 = time.time()
print("Training time: {}min".format(round((t1-t0)/60,2)))
if args.save_model:
torch.save(agent.qnetwork_local.state_dict(), args.info+".pth")
hparams = {"agent": args.agent,
"batch size": args.batch_size*args.worker,
"layer size": args.layer_size,
"n_step": args.n_step,
"memory size": args.memory_size,
"learning rate": args.lr,
"gamma": args.gamma,
"soft update tau": args.tau,
"epsilon decay frames": args.eps_frames,
"min epsilon": args.min_eps,
"random warmup": args.fill_buffer}
metric = {"final average 100 reward": final_average100}
writer.add_hparams(hparams, metric)