forked from KarenUllrich/Tutorial_BayesianCompressionForDL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBayesianLayers.py
421 lines (340 loc) · 17 KB
/
BayesianLayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Variational Dropout version of linear and convolutional layers
Karen Ullrich, Christos Louizos, Oct 2017
"""
import math
import torch
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch import nn
from torch.nn.modules import Module
from torch.autograd import Variable
from torch.nn.modules import utils
def reparametrize(mu, logvar, cuda=False, sampling=True):
if sampling:
std = logvar.mul(0.5).exp_()
if cuda:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return mu + eps * std
else:
return mu
# -------------------------------------------------------
# LINEAR LAYER
# -------------------------------------------------------
class LinearGroupNJ(Module):
"""Fully Connected Group Normal-Jeffrey's layer (aka Group Variational Dropout).
References:
[1] Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." NIPS (2015).
[2] Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. "Variational Dropout Sparsifies Deep Neural Networks." ICML (2017).
[3] Louizos, Christos, Karen Ullrich, and Max Welling. "Bayesian Compression for Deep Learning." NIPS (2017).
"""
def __init__(self, in_features, out_features, cuda=False, init_weight=None, init_bias=None, clip_var=None):
super(LinearGroupNJ, self).__init__()
self.cuda = cuda
self.in_features = in_features
self.out_features = out_features
self.clip_var = clip_var
self.deterministic = False # flag is used for compressed inference
# trainable params according to Eq.(6)
# dropout params
self.z_mu = Parameter(torch.Tensor(in_features))
self.z_logvar = Parameter(torch.Tensor(in_features)) # = z_mu^2 * alpha
# weight params
self.weight_mu = Parameter(torch.Tensor(out_features, in_features))
self.weight_logvar = Parameter(torch.Tensor(out_features, in_features))
self.bias_mu = Parameter(torch.Tensor(out_features))
self.bias_logvar = Parameter(torch.Tensor(out_features))
# init params either random or with pretrained net
self.reset_parameters(init_weight, init_bias)
# activations for kl
self.sigmoid = nn.Sigmoid()
self.softplus = nn.Softplus()
# numerical stability param
self.epsilon = 1e-8
def reset_parameters(self, init_weight, init_bias):
# init means
stdv = 1. / math.sqrt(self.weight_mu.size(1))
self.z_mu.data.normal_(1, 1e-2)
if init_weight is not None:
self.weight_mu.data = torch.Tensor(init_weight)
else:
self.weight_mu.data.normal_(0, stdv)
if init_bias is not None:
self.bias_mu.data = torch.Tensor(init_bias)
else:
self.bias_mu.data.fill_(0)
# init logvars
self.z_logvar.data.normal_(-9, 1e-2)
self.weight_logvar.data.normal_(-9, 1e-2)
self.bias_logvar.data.normal_(-9, 1e-2)
def clip_variances(self):
if self.clip_var:
self.weight_logvar.data.clamp_(max=math.log(self.clip_var))
self.bias_logvar.data.clamp_(max=math.log(self.clip_var))
def get_log_dropout_rates(self):
log_alpha = self.z_logvar - torch.log(self.z_mu.pow(2) + self.epsilon)
return log_alpha
def compute_posterior_params(self):
weight_var, z_var = self.weight_logvar.exp(), self.z_logvar.exp()
self.post_weight_var = self.z_mu.pow(2) * weight_var + z_var * self.weight_mu.pow(2) + z_var * weight_var
self.post_weight_mu = self.weight_mu * self.z_mu
return self.post_weight_mu, self.post_weight_var
def forward(self, x):
if self.deterministic:
assert self.training == False, "Flag deterministic is True. This should not be used in training."
return F.linear(x, self.post_weight_mu, self.bias_mu)
batch_size = x.size()[0]
# compute z
# note that we reparametrise according to [2] Eq. (11) (not [1])
z = reparametrize(self.z_mu.repeat(batch_size, 1), self.z_logvar.repeat(batch_size, 1), sampling=self.training,
cuda=self.cuda)
# apply local reparametrisation trick see [1] Eq. (6)
# to the parametrisation given in [3] Eq. (6)
xz = x * z
mu_activations = F.linear(xz, self.weight_mu, self.bias_mu)
var_activations = F.linear(xz.pow(2), self.weight_logvar.exp(), self.bias_logvar.exp())
return reparametrize(mu_activations, var_activations.log(), sampling=self.training, cuda=self.cuda)
def kl_divergence(self):
# KL(q(z)||p(z))
# we use the kl divergence approximation given by [2] Eq.(14)
k1, k2, k3 = 0.63576, 1.87320, 1.48695
log_alpha = self.get_log_dropout_rates()
KLD = -torch.sum(k1 * self.sigmoid(k2 + k3 * log_alpha) - 0.5 * self.softplus(-log_alpha) - k1)
# KL(q(w|z)||p(w|z))
# we use the kl divergence given by [3] Eq.(8)
try:
KLD_element = -0.5 * self.weight_logvar + 0.5 * (self.weight_logvar.exp() + self.weight_mu.pow(2)) - 0.5
KLD += torch.sum(KLD_element)
except RuntimeError:
import pdb
pdb.set_trace()
# KL bias
KLD_element = -0.5 * self.bias_logvar + 0.5 * (self.bias_logvar.exp() + self.bias_mu.pow(2)) - 0.5
KLD += torch.sum(KLD_element)
return KLD
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
# -------------------------------------------------------
# CONVOLUTIONAL LAYER
# -------------------------------------------------------
class _ConvNdGroupNJ(Module):
"""Convolutional Group Normal-Jeffrey's layers (aka Group Variational Dropout).
References:
[1] Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." NIPS (2015).
[2] Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov. "Variational Dropout Sparsifies Deep Neural Networks." ICML (2017).
[3] Louizos, Christos, Karen Ullrich, and Max Welling. "Bayesian Compression for Deep Learning." NIPS (2017).
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding,
groups, bias, init_weight, init_bias, cuda=False, clip_var=None):
super(_ConvNdGroupNJ, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
self.cuda = cuda
self.clip_var = clip_var
self.deterministic = False # flag is used for compressed inference
if transposed:
self.weight_mu = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
self.weight_logvar = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight_mu = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
self.weight_logvar = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
self.bias_mu = Parameter(torch.Tensor(out_channels))
self.bias_logvar = Parameter(torch.Tensor(out_channels))
self.z_mu = Parameter(torch.Tensor(self.out_channels))
self.z_logvar = Parameter(torch.Tensor(self.out_channels))
self.reset_parameters(init_weight, init_bias)
# activations for kl
self.sigmoid = nn.Sigmoid()
self.softplus = nn.Softplus()
# numerical stability param
self.epsilon = 1e-8
def reset_parameters(self, init_weight, init_bias):
# init means
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
# init means
if init_weight is not None:
self.weight_mu.data = init_weight
else:
self.weight_mu.data.uniform_(-stdv, stdv)
if init_bias is not None:
self.bias_mu.data = init_bias
else:
self.bias_mu.data.fill_(0)
# inti z
self.z_mu.data.normal_(1, 1e-2)
# init logvars
self.z_logvar.data.normal_(-9, 1e-2)
self.weight_logvar.data.normal_(-9, 1e-2)
self.bias_logvar.data.normal_(-9, 1e-2)
def clip_variances(self):
if self.clip_var:
self.weight_logvar.data.clamp_(max=math.log(self.clip_var))
self.bias_logvar.data.clamp_(max=math.log(self.clip_var))
def get_log_dropout_rates(self):
log_alpha = self.z_logvar - torch.log(self.z_mu.pow(2) + self.epsilon)
return log_alpha
def compute_posterior_params(self):
weight_var, z_var = self.weight_logvar.exp(), self.z_logvar.exp()
z_var = z_var.view(z_var.size(0), 1, 1, 1)
z_mu = self.z_mu.view(z_var.size(0), 1, 1, 1)
self.post_weight_var = z_mu.pow(2) * weight_var + z_var * self.weight_mu.pow(2) + z_var * weight_var
self.post_weight_mu = self.weight_mu * z_mu
return self.post_weight_mu, self.post_weight_var
def kl_divergence(self):
# KL(q(z)||p(z))
# we use the kl divergence approximation given by [2] Eq.(14)
k1, k2, k3 = 0.63576, 1.87320, 1.48695
log_alpha = self.get_log_dropout_rates()
KLD = -torch.sum(k1 * self.sigmoid(k2 + k3 * log_alpha) - 0.5 * self.softplus(-log_alpha) - k1)
# KL(q(w|z)||p(w|z))
# we use the kl divergence given by [3] Eq.(8)
KLD_element = -self.weight_logvar + 0.5 * (self.weight_logvar.exp() + self.weight_mu.pow(2)) - 0.5
KLD += torch.sum(KLD_element)
# KL bias
KLD_element = -self.bias_logvar + 0.5 * (self.bias_logvar.exp() + self.bias_mu.pow(2)) - 0.5
KLD += torch.sum(KLD_element)
return KLD
def __repr__(self):
s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
class Conv1dGroupNJ(_ConvNdGroupNJ):
r"""
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
cuda=False, init_weight=None, init_bias=None, clip_var=None):
kernel_size = utils._single(kernel_size)
stride = utils._single(stride)
padding = utils._single(padding)
dilation = utils._single(dilation)
super(Conv1dGroupNJ, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, utils._pair(0), groups, bias, init_weight, init_bias, cuda, clip_var)
def forward(self, x):
if self.deterministic:
assert self.training == False, "Flag deterministic is True. This should not be used in training."
return F.conv1d(x, self.post_weight_mu, self.bias_mu)
batch_size = x.size()[0]
# apply local reparametrisation trick see [1] Eq. (6)
# to the parametrisation given in [3] Eq. (6)
mu_activations = F.conv1d(x, self.weight_mu, self.bias_mu, self.stride,
self.padding, self.dilation, self.groups)
var_activations = F.conv1d(x.pow(2), self.weight_logvar.exp(), self.bias_logvar.exp(), self.stride,
self.padding, self.dilation, self.groups)
# compute z
# note that we reparametrise according to [2] Eq. (11) (not [1])
z = reparametrize(self.z_mu.repeat(batch_size, 1, 1), self.z_logvar.repeat(batch_size, 1, 1),
sampling=self.training, cuda=self.cuda)
z = z[:, :, None]
return reparametrize(mu_activations * z, (var_activations * z.pow(2)).log(), sampling=self.training,
cuda=self.cuda)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class Conv2dGroupNJ(_ConvNdGroupNJ):
r"""
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
cuda=False, init_weight=None, init_bias=None, clip_var=None):
kernel_size = utils._pair(kernel_size)
stride = utils._pair(stride)
padding = utils._pair(padding)
dilation = utils._pair(dilation)
super(Conv2dGroupNJ, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, utils._pair(0), groups, bias, init_weight, init_bias, cuda, clip_var)
def forward(self, x):
if self.deterministic:
assert self.training == False, "Flag deterministic is True. This should not be used in training."
return F.conv2d(x, self.post_weight_mu, self.bias_mu, self.stride,
self.padding, self.dilation, self.groups)
batch_size = x.size()[0]
# apply local reparametrisation trick see [1] Eq. (6)
# to the parametrisation given in [3] Eq. (6)
mu_activations = F.conv2d(x, self.weight_mu, self.bias_mu, self.stride,
self.padding, self.dilation, self.groups)
var_activations = F.conv2d(x.pow(2), self.weight_logvar.exp(), self.bias_logvar.exp(), self.stride,
self.padding, self.dilation, self.groups)
# compute z
# note that we reparametrise according to [2] Eq. (11) (not [1])
z = reparametrize(self.z_mu.repeat(batch_size, 1), self.z_logvar.repeat(batch_size, 1),
sampling=self.training, cuda=self.cuda)
z = z[:, :, None, None]
return reparametrize(mu_activations * z, (var_activations * z.pow(2)).log(), sampling=self.training,
cuda=self.cuda)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class Conv3dGroupNJ(_ConvNdGroupNJ):
r"""
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,
cuda=False, init_weight=None, init_bias=None, clip_var=None):
kernel_size = utils._triple(kernel_size)
stride = utils._triple(stride)
padding = utils._triple(padding)
dilation = utils.triple(dilation)
super(Conv3dGroupNJ, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, utils._pair(0), groups, bias, init_weight, init_bias, cuda, clip_var)
def forward(self, x):
if self.deterministic:
assert self.training == False, "Flag deterministic is True. This should not be used in training."
return F.conv3d(x, self.post_weight_mu, self.bias_mu)
batch_size = x.size()[0]
# apply local reparametrisation trick see [1] Eq. (6)
# to the parametrisation given in [3] Eq. (6)
mu_activations = F.conv3d(x, self.weight_mu, self.bias_mu, self.stride,
self.padding, self.dilation, self.groups)
var_weights = self.weight_logvar.exp()
var_activations = F.conv3d(x.pow(2), var_weights, self.bias_logvar.exp(), self.stride,
self.padding, self.dilation, self.groups)
# compute z
# note that we reparametrise according to [2] Eq. (11) (not [1])
z = reparametrize(self.z_mu.repeat(batch_size, 1, 1, 1, 1), self.z_logvar.repeat(batch_size, 1, 1, 1, 1),
sampling=self.training, cuda=self.cuda)
z = z[:, :, None, None, None]
return reparametrize(mu_activations * z, (var_activations * z.pow(2)).log(), sampling=self.training,
cuda=self.cuda)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'