forked from KarenUllrich/Tutorial_BayesianCompressionForDL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompression.py
134 lines (95 loc) · 4.3 KB
/
compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Compression Tools
Karen Ullrich, Oct 2017
References:
[1] Michael T. Heath. 1996. Scientific Computing: An Introductory Survey (2nd ed.). Eric M. Munson (Ed.). McGraw-Hill Higher Education. Chapter 1
"""
import numpy as np
# -------------------------------------------------------
# General tools
# -------------------------------------------------------
def unit_round_off(t=23):
"""
:param t:
number significand bits
:return:
unit round off based on nearest interpolation, for reference see [1]
"""
return 0.5 * 2. ** (1. - t)
SIGNIFICANT_BIT_PRECISION = [unit_round_off(t=i + 1) for i in range(23)]
def float_precision(x):
out = np.sum([x < sbp for sbp in SIGNIFICANT_BIT_PRECISION])
return out
def float_precisions(X, dist_fun, layer=1):
X = X.flatten()
out = [float_precision(2 * x) for x in X]
out = np.ceil(dist_fun(out))
return out
def special_round(input, significant_bit):
delta = unit_round_off(t=significant_bit)
rounded = np.floor(input / delta + 0.5)
rounded = rounded * delta
return rounded
def fast_infernce_weights(w, exponent_bit, significant_bit):
return special_round(w, significant_bit)
def compress_matrix(x):
if len(x.shape) != 2:
A, B, C, D = x.shape
x = x.reshape(A * B, C * D)
# remove non-necessary filters and rows
x = x[:, (x != 0).any(axis=0)]
x = x[(x != 0).any(axis=1), :]
else:
# remove unnecessary rows, columns
x = x[(x != 0).any(axis=1), :]
x = x[:, (x != 0).any(axis=0)]
return x
def extract_pruned_params(layers, masks):
post_weight_mus = []
post_weight_vars = []
for i, (layer, mask) in enumerate(zip(layers, masks)):
# compute posteriors
post_weight_mu, post_weight_var = layer.compute_posterior_params()
post_weight_var = post_weight_var.cpu().data.numpy()
post_weight_mu = post_weight_mu.cpu().data.numpy()
# apply mask to mus and variances
post_weight_mu = post_weight_mu * mask
post_weight_var = post_weight_var * mask
post_weight_mus.append(post_weight_mu)
post_weight_vars.append(post_weight_var)
return post_weight_mus, post_weight_vars
# -------------------------------------------------------
# Compression rates (fast inference scenario)
# -------------------------------------------------------
def _compute_compression_rate(vars, in_precision=32., dist_fun=lambda x: np.max(x), overflow=10e38):
# compute in number of bits occupied by the original architecture
sizes = [v.size for v in vars]
nb_weights = float(np.sum(sizes))
IN_BITS = in_precision * nb_weights
# prune architecture
vars = [compress_matrix(v) for v in vars]
sizes = [v.size for v in vars]
# compute
significant_bits = [float_precisions(v, dist_fun, layer=k + 1) for k, v in enumerate(vars)]
exponent_bit = np.ceil(np.log2(np.log2(overflow) + 1.) + 1.)
total_bits = [1. + exponent_bit + sb for sb in significant_bits]
OUT_BITS = np.sum(np.asarray(sizes) * np.asarray(total_bits))
return nb_weights / np.sum(sizes), IN_BITS / OUT_BITS, significant_bits, exponent_bit
def compute_compression_rate(layers, masks):
# reduce architecture
weight_mus, weight_vars = extract_pruned_params(layers, masks)
# compute overflow level based on maximum weight
overflow = np.max([np.max(np.abs(w)) for w in weight_mus])
# compute compression rate
CR_architecture, CR_fast_inference, _, _ = _compute_compression_rate(weight_vars, dist_fun=lambda x: np.mean(x), overflow=overflow)
print("Compressing the architecture will decrease the model by a factor of %.1f." % (CR_architecture))
print("Making use of weight uncertainty can reduce the model by a factor of %.1f." % (CR_fast_inference))
def compute_reduced_weights(layers, masks):
weight_mus, weight_vars = extract_pruned_params(layers, masks)
overflow = np.max([np.max(np.abs(w)) for w in weight_mus])
_, _, significant_bits, exponent_bits = _compute_compression_rate(weight_vars, dist_fun=lambda x: np.mean(x), overflow=overflow)
weights = [fast_infernce_weights(weight_mu, exponent_bits, significant_bit) for weight_mu, significant_bit in
zip(weight_mus, significant_bits)]
return weights