-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
65 lines (49 loc) · 1.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import numpy as np
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
def get_error(output, target, topk=(1,)):
"""Computes the error@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(100.0 - correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_no_params(net, verbose=True, sd=False):
if sd:
params = net
else:
params = net.state_dict()
tot= 0
conv_tot = 0
for p in params:
no = params[p].view(-1).__len__()
if ('num_batches_tracked' not in p) and ('running' not in p) and ('mask' not in p):
tot += no
if verbose:
print('%s has %d params' % (p,no))
if 'conv' in p:
conv_tot += no
if verbose:
print('Net has %d conv params' % conv_tot)
print('Net has %d params in total' % tot)
return tot