-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathessential_script.py
229 lines (207 loc) · 9.38 KB
/
essential_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#MIT License
#
#Copyright (c) 2020 Massimiliano Patacchiola
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.
#This is an essential implementation of the paper:
#
#"Self-Supervised Relational Reasoning for Representation Learning"
#Patacchiola M. and Strokey A., Advances in Neural Information
#Processing Systems (NeurIPS 2020, Spotlight).
#
#The code runs on CPU (porting on GPU is trivial in PyTorch) with the
#hyper-parameters set in the main function. The script will download
#the CIFAR-10 dataset if not present and start training for 200 epochs.
#This can take a few hours, depending on the availabel hardware.
#At the end of the procedure the trained backbone is stored, and can be
#used for downstream tasks (e.g. classification, image retrieval).
#The code can be easily customized on other datasets and backbones.
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import math
class MultiCIFAR10(torchvision.datasets.CIFAR10):
"""Override torchvision CIFAR10 for multi-image management.
Similar class can be defined for other datasets (e.g. CIFAR100).
Given K total augmentations, it returns a list of lenght K with
different augmentations of the input mini-batch.
"""
def __init__(self, K, **kwds):
super().__init__(**kwds)
self.K = K # tot number of augmentations
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
pic = Image.fromarray(img)
img_list = list()
if self.transform is not None:
for _ in range(self.K):
img_transformed = self.transform(pic.copy())
img_list.append(img_transformed)
else:
img_list = img
return img_list, target
class Conv4(torch.nn.Module):
"""A simple 4 layers CNN.
Used as backbone.
"""
def __init__(self):
super(Conv4, self).__init__()
self.feature_size = 64
self.name = "conv4"
self.layer1 = torch.nn.Sequential(
torch.nn.Conv2d(3, 8, kernel_size=3, stride=1, padding=1, bias=False),
torch.nn.BatchNorm2d(8),
torch.nn.ReLU(),
torch.nn.AvgPool2d(kernel_size=2, stride=2)
)
self.layer2 = torch.nn.Sequential(
torch.nn.Conv2d(8, 16, kernel_size=3, stride=1, padding=1, bias=False),
torch.nn.BatchNorm2d(16),
torch.nn.ReLU(),
torch.nn.AvgPool2d(kernel_size=2, stride=2)
)
self.layer3 = torch.nn.Sequential(
torch.nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False),
torch.nn.BatchNorm2d(32),
torch.nn.ReLU(),
torch.nn.AvgPool2d(kernel_size=2, stride=2)
)
self.layer4 = torch.nn.Sequential(
torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(),
torch.nn.AdaptiveAvgPool2d(1)
)
self.flatten = torch.nn.Flatten()
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, torch.nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
h = self.layer1(x)
h = self.layer2(h)
h = self.layer3(h)
h = self.layer4(h)
h = self.flatten(h)
return h
class RelationalReasoning(torch.nn.Module):
"""Self-Supervised Relational Reasoning.
Essential implementation of the method, which uses
the 'cat' aggregation function (the most effective),
and can be used with any backbone.
"""
def __init__(self, backbone, feature_size=64):
super(RelationalReasoning, self).__init__()
self.backbone = backbone
self.relation_head = torch.nn.Sequential(
torch.nn.Linear(feature_size*2, 256),
torch.nn.BatchNorm1d(256),
torch.nn.LeakyReLU(),
torch.nn.Linear(256, 1))
def aggregate(self, features, K):
relation_pairs_list = list()
targets_list = list()
size = int(features.shape[0] / K)
shifts_counter=1
for index_1 in range(0, size*K, size):
for index_2 in range(index_1+size, size*K, size):
# Using the 'cat' aggregation function by default
pos_pair = torch.cat([features[index_1:index_1+size],
features[index_2:index_2+size]], 1)
# Shuffle without collisions by rolling the mini-batch (negatives)
neg_pair = torch.cat([
features[index_1:index_1+size],
torch.roll(features[index_2:index_2+size],
shifts=shifts_counter, dims=0)], 1)
relation_pairs_list.append(pos_pair)
relation_pairs_list.append(neg_pair)
targets_list.append(torch.ones(size, dtype=torch.float32))
targets_list.append(torch.zeros(size, dtype=torch.float32))
shifts_counter+=1
if(shifts_counter>=size):
shifts_counter=1 # avoid identity pairs
relation_pairs = torch.cat(relation_pairs_list, 0)
targets = torch.cat(targets_list, 0)
return relation_pairs, targets
def train(self, tot_epochs, train_loader):
optimizer = torch.optim.Adam([
{'params': self.backbone.parameters()},
{'params': self.relation_head.parameters()}])
BCE = torch.nn.BCEWithLogitsLoss()
self.backbone.train()
self.relation_head.train()
for epoch in range(tot_epochs):
# the real target is discarded (unsupervised)
for i, (data_augmented, _) in enumerate(train_loader):
K = len(data_augmented) # tot augmentations
x = torch.cat(data_augmented, 0)
optimizer.zero_grad()
# forward pass (backbone)
features = self.backbone(x)
# aggregation function
relation_pairs, targets = self.aggregate(features, K)
# forward pass (relation head)
score = self.relation_head(relation_pairs).squeeze()
# cross-entropy loss and backward
loss = BCE(score, targets)
loss.backward()
optimizer.step()
# estimate the accuracy
predicted = torch.round(torch.sigmoid(score))
correct = predicted.eq(targets.view_as(predicted)).sum()
accuracy = (100.0 * correct / float(len(targets)))
if(i%100==0):
print('Epoch [{}][{}/{}] loss: {:.5f}; accuracy: {:.2f}%' \
.format(epoch+1, i+1, len(train_loader)+1,
loss.item(), accuracy.item()))
def main():
# Hyper-parameters of the simulation
K = 4 # tot augmentations, in the paper K=32 for CIFAR10/100
batch_size = 64 # 64 has been used in the paper
tot_epochs = 1 # 200 has been used in the paper
feature_size = 64 # number of units for the Conv4 backbone
# Those are the transformations used in the paper
normalize = transforms.Normalize(mean=[0.491, 0.482, 0.447],
std=[0.247, 0.243, 0.262]) # CIFAR10
color_jitter = transforms.ColorJitter(brightness=0.8, contrast=0.8,
saturation=0.8, hue=0.2)
rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
rnd_gray = transforms.RandomGrayscale(p=0.2)
rnd_rcrop = transforms.RandomResizedCrop(size=32, scale=(0.08, 1.0),
interpolation=2)
rnd_hflip = transforms.RandomHorizontalFlip(p=0.5)
train_transform = transforms.Compose([rnd_rcrop, rnd_hflip,
rnd_color_jitter, rnd_gray,
transforms.ToTensor(), normalize])
backbone = Conv4() # simple CNN with 64 linear output units
model = RelationalReasoning(backbone, feature_size)
train_set = MultiCIFAR10(K=K, root='data', train=True,
transform=train_transform,
download=True)
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=batch_size,
shuffle=True)
model.train(tot_epochs=tot_epochs, train_loader=train_loader)
torch.save(model.backbone.state_dict(), './backbone.tar')
if __name__ == "__main__":
main()