-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_linear_evaluation.py
125 lines (107 loc) · 6.13 KB
/
train_linear_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# The MIT License (MIT)
# Copyright (c) 2020 Massimiliano Patacchiola
# Paper: "Self-Supervised Relational Reasoning for Representation Learning", M. Patacchiola & A. Storkey, NeurIPS 2020
# GitHub: https://github.com/mpatacchiola/self-supervised-relational-reasoning
# Manage the linear evaluation phase on different datasets/backbones/methods.
# This script should be used after the self-supervised training phase to evaluate the methods.
# Example command:
#
# python train_linear_evaluation.py --dataset="cifar10" --method="relationnet" --backbone="conv4" --seed=3 --data_size=128 --gpu=0 --epochs=100 --checkpoint="./checkpoint/relationnet/cifar10/relationnet_cifar10_conv4_seed_3_epoch_200.tar"
import os
import argparse
parser = argparse.ArgumentParser(description="Linear evaluation script")
parser.add_argument("--seed", default=-1, type=int, help="Seed for Numpy and PyTorch. Default: -1 (None)")
parser.add_argument("--epochs", default=100, type=int, help="Total number of epochs")
parser.add_argument("--dataset", default="cifar10", help="Dataset: cifar10|100, supercifar100, tiny, slim, stl10")
parser.add_argument("--backbone", default="conv4", help="Backbone: conv4, resnet|8|32|34|56")
parser.add_argument("--method", default="standard", help="Method name (used just as string in the checkpoint name)")
parser.add_argument("--data_size", default=128, type=int, help="Size of the mini-batch")
parser.add_argument("--checkpoint", default="./", help="Address of the checkpoint file")
parser.add_argument("--finetune", default="False", type=str, help="Finetune the backbone during training (default: False)")
parser.add_argument("--num_workers", default=8, type=int, help="Number of torchvision workers used to load data (default: 8)")
parser.add_argument("--id", default="", help="Additional string appended when saving the checkpoints")
parser.add_argument("--gpu", default=0, type=int, help="GPU id in case of multiple GPUs")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
import torch
import torch.optim
import torchvision.datasets as dset
import torchvision.transforms as transforms
import argparse
import numpy as np
import random
if(args.seed>=0):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print("[INFO] Setting SEED: " + str(args.seed))
else:
print("[INFO] Setting SEED: None")
if(torch.cuda.is_available() == False): print("[WARNING] CUDA is not available.")
if(args.finetune=="True" or args.finetune=="true"):
print("[INFO] Finetune set to True, the backbone will be finetuned.")
print("[INFO] Found", str(torch.cuda.device_count()), "GPU(s) available.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("[INFO] Device type:", str(device))
from datamanager import DataManager
manager = DataManager(args.seed)
num_classes = manager.get_num_classes(args.dataset)
train_transform = manager.get_train_transforms("lineval", args.dataset)
train_loader, _ = manager.get_train_loader(dataset=args.dataset,
data_type="single",
data_size=args.data_size,
train_transform=train_transform,
repeat_augmentations=None,
num_workers=args.num_workers,
drop_last=False)
test_loader = manager.get_test_loader(args.dataset, args.data_size)
if(args.backbone=="conv4"):
from backbones.conv4 import Conv4
feature_extractor = Conv4(flatten=True)
elif(args.backbone=="resnet8"):
from backbones.resnet_small import ResNet, BasicBlock
feature_extractor = ResNet(BasicBlock, [1, 1, 1], channels=[16, 32, 64], flatten=True)
elif(args.backbone=="resnet32"):
from backbones.resnet_small import ResNet, BasicBlock
feature_extractor = ResNet(BasicBlock, [5, 5, 5], channels=[16, 32, 64], flatten=True)
elif(args.backbone=="resnet56"):
from backbones.resnet_small import ResNet, BasicBlock
feature_extractor = ResNet(BasicBlock, [9, 9, 9], channels=[16, 32, 64], flatten=True)
elif(args.backbone=="resnet34"):
from backbones.resnet_large import ResNet, BasicBlock
feature_extractor = ResNet(BasicBlock, layers=[3, 4, 6, 3],zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None)
else:
raise RuntimeError("[ERROR] the backbone " + str(args.backbone) + " is not supported.")
print("[INFO]", str(str(args.backbone)), "loaded in memory.")
print("[INFO] Feature size:", str(feature_extractor.feature_size))
def main():
print("[INFO] Loading checkpoint...")
checkpoint = torch.load(args.checkpoint)
feature_extractor.load_state_dict(checkpoint["backbone"])
from methods.standard import StandardModel
model = StandardModel(feature_extractor, num_classes)
model.to(device)
if not os.path.exists("./checkpoint/"+str(args.method)+"/"+str(args.dataset)):
os.makedirs("./checkpoint/"+str(args.method)+"/"+str(args.dataset))
if(args.id!=""):
header = str(args.method)+ "_" + str(args.id) + "_" + str(args.dataset) + "_" + str(args.backbone) + "_seed_" + str(args.seed)
else:
header = str(args.method) + "_" + str(args.dataset) + "_" + str(args.backbone) + "_seed_" + str(args.seed)
for epoch in range(0, args.epochs):
if(args.finetune=="True" or args.finetune=="true"):
loss_train, accuracy_train = model.finetune(epoch, train_loader)
else:
loss_train, accuracy_train = model.linear_evaluation(epoch, train_loader)
checkpoint_path = "./checkpoint/"+str(args.method)+"/"+str(args.dataset)+"/"+header+"_epoch_"+ str(epoch+1)+"_linear_evaluation.tar"
print("[INFO] Saving in:", checkpoint_path)
model.save(checkpoint_path)
loss_test, accuracy_test = model.test(test_loader)
print("Test accuracy: " + str(accuracy_test) + "%")
if __name__== "__main__": main()