-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmiscell.cpp
527 lines (457 loc) · 17.1 KB
/
miscell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/* miscell.cpp: misc. astronomy-related functions
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#define __USE_MINGW_ANSI_STDIO 1
/* above causes MinGW to use "real" long doubles */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include "watdefs.h"
#include "stringex.h"
#include "afuncs.h"
#include "date.h"
#ifdef __WATCOMC__
#define floorl floor
#define sinl sin
#endif
static const double pi = 3.1415926535897932384626433832795028841971693993751058209749445923;
static const long double j2000 = 2451545.0;
/* It's embarrassingly common to find out that, after roundoff errors,
you're attempting to take the arccosine or arcsine of +/- 1.0000001,
resulting in a math exception. Use of acose( ) and asine( ) lets you
slip around such difficulties.
There are two reasons to be careful about this. First, if a for-real
error results in arg=78, acose( ) (for example) will silently truncate it
to 1 and return 0. Second, if you're sometimes getting 1+(1e-14), you're
probably also sometimes getting 1-(1e-14). In this range, the precision
of the acos and asin functions is horrible, and deformed values will be
returned silently. It's better, in such cases, to give some thought as
to a better way to get the answer you want. Look, for example, in
'dist_pa.cpp' where asin is used in one domain and acos in the other,
avoiding areas where bad values would be generated.
*/
double DLL_FUNC acose( const double arg)
{
if( arg >= 1.)
return( 0.);
if( arg <= -1.)
return( pi);
return( acos( arg));
}
double DLL_FUNC asine( const double arg)
{
if( arg >= 1.)
return( pi / 2);
if( arg <= -1.)
return( -pi / 2.);
return( asin( arg));
}
void DLL_FUNC set_identity_matrix( double DLLPTR *matrix)
{
int i;
for( i = 0; i < 9; i++)
matrix[i] = ((i & 3) ? 0. : 1.);
}
/* Inverting an orthonormal matrix happens to be an unusually */
/* simple job: swap rows and columns, and you're in business. */
/* This really ought to be just called 'transpose_matrix'. */
#define SWAP( A, B, TEMP) { TEMP = A; A = B; B = TEMP; }
void DLL_FUNC invert_orthonormal_matrix( double DLLPTR *matrix)
{
double temp;
SWAP( matrix[1], matrix[3], temp);
SWAP( matrix[2], matrix[6], temp);
SWAP( matrix[5], matrix[7], temp);
}
/* Variable star designations follow a rather ugly scheme, for historical
reasons. The first 334 are labelled in the following order:
R S T U V W X Y Z RR RS RT RU RV RW RX RY RZ SS ST SU SV SW SX
SY SZ TT TU TV TW TX TY TZ UU UV UW UX UY UZ VV VW VX VY VZ WW WX WY WZ
XX XY XZ YY YZ ZZ AA AB AC AD AE AF AG AH AI AK AL AM AN AO AP AQ AR AS
AT AU AV AW AX AY AZ BB BC BD BE BF BG BH BI BK BL BM BN BO BP BQ BR BS
BT BU BV BW BX BY BZ CC CD CE CF CG CH CI CK CL CM CN CO CP CQ CR CS CT
CU CV CW CX CY CZ DD DE DF DG DH DI DK DL DM DN DO DP DQ DR DS DT DU DV
DW DX DY DZ EE EF EG EH EI EK EL EM EN EO EP EQ ER ES ET EU EV EW EX EY
EZ FF FG FH FI FK FL FM FN FO FP FQ FR FS FT FU FV FW FX FY FZ GG GH GI
GK GL GM GN GO GP GQ GR GS GT GU GV GW GX GY GZ HH HI HK HL HM HN HO HP
HQ HR HS HT HU HV HW HX HY HZ II IK IL IM IN IO IP IQ IR IS IT IU IV IW
IX IY IZ KK KL KM KN KO KP KQ KR KS KT KU KV KW KX KY KZ LL LM LN LO LP
LQ LR LS LT LU LV LW LX LY LZ MM MN MO MP MQ MR MS MT MU MV MW MX MY MZ
NN NO NP NQ NR NS NT NU NV NW NX NY NZ OO OP OQ OR OS OT OU OV OW OX OY
OZ PP PQ PR PS PT PU PV PW PX PY PZ QQ QR QS QT QU QV QW QX QY QZ
The first one found in a constellation is 'R (constellation name)';
followed by 'S', 'T', ... 'Z'. That allows up to nine variables per
constellation; the tenth gets labelled 'RR', followed by 'RS', 'RT',
'RU',... 'RZ'; then 'SS', 'ST', 'SU'... 'SZ', 'TT'... 'TZ', and so on,
up to 'ZZ'. This allows a further 9+8+7+6+5+4+3+2+1=45 stars to be
labelled. The letters are always 'R' through 'Z', and the second letter
is never alphabetically before the first.
Following this, we cycle the first letter back to 'A'. This
gives 'AA', 'AB', 'AC', ... 'AZ'; 'BB', 'BC', 'BD', ... 'BZ'; and,
eventually, 'QQ', 'QR', ... 'QZ'. For some reason, 'J' is always
skipped.
Following this lunacy for 334 variable stars, they are simply labelled
"V335", "V336", etc.
*/
void DLL_FUNC make_var_desig( char DLLPTR *buff, int var_no)
{
int i, curr_no = 10;
if( var_no < 10)
{
*buff++ = (char)('R' + var_no - 1);
*buff = '\0';
}
else if( var_no > 334)
{
*buff++ = 'V';
for( i = 1000; i; i /= 10)
if( var_no >= i)
*buff++ = (char)( (var_no / i) % 10 + '0');
*buff = '\0';
}
else /* two-letter abbr */
{
buff[2] = '\0';
for( i = 'R'; i <= 'Z' && curr_no + ('Z' - i) < var_no; i++)
curr_no += 'Z' - i + 1;
/* gotta get weird to allow for fact that J isn't used */
if( i > 'Z') /* in variable star designators */
for( i = 'A'; i < 'Q' && curr_no + ('Y' - i) < var_no; i++)
curr_no += 'Z' - i;
buff[0] = (char)i;
buff[1] = (char)(i + var_no - curr_no);
/* more weirdness due to missing J: bump up letters J-Q */
if( buff[0] < 'R' && buff[0] >= 'J')
buff[0]++;
if( buff[0] < 'R' && buff[1] >= 'J')
buff[1]++;
}
}
void DLL_FUNC rotate_vector( double DLLPTR *v, const double angle,
const int axis)
{
const double sin_ang = sin( angle), cos_ang = cos( angle);
const int a = (axis + 1) % 3, b = (axis + 2) % 3;
const double temp = v[a] * cos_ang - v[b] * sin_ang;
v[b] = v[b] * cos_ang + v[a] * sin_ang;
v[a] = temp;
}
void DLL_FUNC pre_spin_matrix( double *v1, double *v2, const double angle)
{
const double sin_ang = sin( angle);
const double cos_ang = cos( angle);
int i;
for( i = 3; i; i--)
{
const double tval = *v1 * cos_ang - *v2 * sin_ang;
*v2 = *v2 * cos_ang + *v1 * sin_ang;
*v1 = tval;
v1 += 3;
v2 += 3;
}
}
void DLL_FUNC spin_matrix( double *v1, double *v2, const double angle)
{
const double sin_ang = sin( angle);
const double cos_ang = cos( angle);
int i;
for( i = 3; i; i--)
{
const double tval = *v1 * cos_ang - *v2 * sin_ang;
*v2 = *v2 * cos_ang + *v1 * sin_ang;
*v1++ = tval;
v2++;
}
}
/* See above for a discussion of the variable star designation scheme. */
int DLL_FUNC decipher_var_desig( const char DLLPTR *desig)
{
int len, first, second, rval = -2;
first = toupper( desig[0]);
second = toupper( desig[1]);
for( len = 0; desig[len] && desig[len] != ' '; len++)
;
switch( len)
{
case 1:
if( first >= 'R' && first <= 'Z')
rval = first - 'R';
if( desig[0] >= 'A' && desig[0] <= 'Q')
rval = 9200 + desig[0] - 'A';
if( (desig[0] >= 'a' && desig[0] <= 'q') || desig[0] == 'u')
rval = 9100 + desig[0] - 'a';
break;
case 2:
if( second >= first && second <= 'Z')
{
if( first >= 'R') /* RR...ZZ */
{
first -= 'R';
second -= 'R';
rval = first * 8 - first * (first - 1) / 2 + 9 + second;
}
else if( first != 'J' && second != 'J' && first >= 'A')
{ /* AA...QQ */
first -= 'A';
if( first > 8) first--;
second -= 'A';
if( second > 8) second--;
rval = first * 24 - first * (first - 1) / 2 + 9 + 45 + second;
}
}
break;
default:
if( first == 'V')
rval = atoi( desig + 1) - 1;
break;
}
rval++;
return( rval);
}
/* Used in showing the decimal part of a time unit, in the following
full_ctimel( ) function. Just using sprintf and friends can lead to
problems with .999999... being rendered as 1. */
static void show_remainder( char *buff, long double remainder, unsigned precision)
{
*buff++ = '.';
assert( remainder >= 0. && remainder < 1.);
while( precision--)
{
unsigned digit;
remainder *= 10.;
digit = (unsigned)remainder;
*buff++ = (char)( '0' + digit);
assert( digit <= 9);
remainder -= (double)digit;
}
*buff++ = '\0';
}
static void remove_char( char *buff, const char removed)
{
size_t i, j;
for( i = j = 0; buff[i]; i++)
if( buff[i] != removed)
buff[j++] = buff[i];
buff[j] = '\0';
}
/* The following is analogous to the C ctime( ) function, except that it
handles dates previous to 1970 (at least back to -5.5 million years
and forward to 5.5 million years) and allows for other calendars
(Gregorian, Julian, Hebrew, etc.; see 'date.cpp' for details).
Also, greater control over the output format is provided. */
void DLL_FUNC full_ctimel( char *buff, long double t2k, const int format)
{
const int precision = (format >> 4) & 0xf, calendar = format & 0xf;
const int output_format = (format & FULL_CTIME_FORMAT_MASK);
char *ibuff = buff; /* keep track of the start of the output */
int day, month;
long units, i;
const int leading_zeroes = (format & FULL_CTIME_LEADING_ZEROES);
long year, int_t2k, day_of_week;
long double add_on = 1.;
long double remains;
const size_t max_buff_size = 80;
char *leading_digit_ptr;
if( output_format == FULL_CTIME_FORMAT_SECONDS)
units = seconds_per_day;
else if( output_format == FULL_CTIME_FORMAT_HH_MM)
units = minutes_per_day;
else if( output_format == FULL_CTIME_FORMAT_HH)
units = hours_per_day;
else /* output in days */
units = 1;
for( i = precision; i; i--)
add_on /= 10.;
if( format & FULL_CTIME_ROUNDING)
add_on *= 0.5 / (double)units;
else
add_on *= 0.05 / seconds_per_day;
t2k += add_on;
if( output_format == FULL_CTIME_FORMAT_YEAR)
{
char tbuff[40];
#ifdef _WIN32
snprintf( tbuff, sizeof( tbuff), "%21.16Lf", t2k / 365.25 + 2000.);
#else
snprintf_err( tbuff, sizeof( tbuff), "%21.16Lf", t2k / 365.25 + 2000.);
#endif
tbuff[precision + 5] = '\0';
if( !precision)
tbuff[4] = '\0';
strlcpy_err( buff, tbuff, max_buff_size);
if( leading_zeroes)
while( *buff == ' ')
*buff++ = '0';
return;
}
if( output_format == FULL_CTIME_FORMAT_JD
|| output_format == FULL_CTIME_FORMAT_MJD)
{
char format_str[10];
snprintf_err( format_str, sizeof( format_str), "JD %%.%dLf", precision);
if( output_format == FULL_CTIME_FORMAT_MJD)
{
*buff++ = 'M';
t2k += j2000 - 2400000.5;
}
else
t2k += j2000;
snprintf_err( buff, max_buff_size, format_str, t2k);
if( leading_zeroes)
while( *buff == ' ')
*buff++ = '0';
return;
}
t2k += .5;
int_t2k = (long)floorl( t2k);
day_of_week = (int_t2k + 6) % 7;
if( day_of_week < 0) /* keep 0 <= day_of_week < 7: */
day_of_week += 7;
if( format & FULL_CTIME_DAY_OF_WEEK_FIRST)
snprintf_err( buff, max_buff_size, "%s ",
set_day_of_week_name( (int)day_of_week, NULL));
else
*buff = '\0';
day_to_dmy( int_t2k + 2451545, &day, &month, &year, calendar);
remains = t2k - (long double)int_t2k;
/* i.e., fractional part of day */
if( !(format & FULL_CTIME_TIME_ONLY)) /* we want the date: */
{
char month_str[25];
char year_str[20];
char day_str[15];
if( format & FULL_CTIME_MONTHS_AS_DIGITS)
snprintf_err( month_str, sizeof( month_str), (leading_zeroes ? "%02d" : "%2d"), month);
else
strlcpy_err( month_str, set_month_name( month, NULL), sizeof( month_str));
if( format & FULL_CTIME_TWO_DIGIT_YEAR)
snprintf_err( year_str, sizeof( year_str), "%02d", abs( (int)year % 100));
else
snprintf_err( year_str, sizeof( year_str), (leading_zeroes ? "%04ld" : "%4ld"), year);
if( format & FULL_CTIME_YEAR_FIRST)
if( !(format & FULL_CTIME_NO_YEAR))
snprintf_append( buff, max_buff_size, "%s ", year_str);
snprintf_err( day_str, sizeof( day_str), (leading_zeroes ? "%02d" : "%2d"), day);
if( output_format == FULL_CTIME_FORMAT_DAY && precision)
show_remainder( day_str + 2, remains, (unsigned)precision);
if( format & FULL_CTIME_DAY_OF_YEAR)
{
const int day_of_year = int_t2k + 2451545 - dmy_to_day( 0, 1, year, calendar);
snprintf_append( buff, max_buff_size, "%03d%s", day_of_year, day_str + 2);
}
else if( format & FULL_CTIME_MONTH_DAY)
snprintf_append( buff, max_buff_size, "%s %s", month_str, day_str);
else
snprintf_append( buff, max_buff_size, "%s %s", day_str, month_str);
if( !(format & FULL_CTIME_YEAR_FIRST)) /* year comes at end */
if( !(format & FULL_CTIME_NO_YEAR))
snprintf_append( buff, max_buff_size, " %s", year_str);
if( output_format != FULL_CTIME_FORMAT_DAY)
strlcat_err( buff, " ", max_buff_size);
}
remains *= (double)units;
i = (long)remains;
if( i == units) /* keep things from rounding up incorrectly */
i--;
leading_digit_ptr = buff + strlen( buff);
switch( output_format)
{
case FULL_CTIME_FORMAT_SECONDS:
snprintf_append( buff, max_buff_size, "%2ld:%02ld:%02ld", i / 3600L, (i / 60) % 60L,
i % 60L);
break;
case FULL_CTIME_FORMAT_HH_MM:
snprintf_append( buff, max_buff_size, "%2ld:%02ld", i / 60L, i % 60L);
break;
case FULL_CTIME_FORMAT_HH:
snprintf_append( buff, max_buff_size, "%2ld", i);
break;
}
if( output_format != FULL_CTIME_FORMAT_DAY)
{
if( leading_zeroes && *leading_digit_ptr == ' ')
*leading_digit_ptr = '0';
if( precision)
show_remainder( buff + strlen( buff), remains - (double)i,
(unsigned)precision);
}
if( format & FULL_CTIME_DAY_OF_WEEK_LAST)
snprintf_append( buff, max_buff_size, " %s",
set_day_of_week_name( (int)day_of_week, NULL));
if( format & FULL_CTIME_NO_SPACES)
remove_char( ibuff, ' ');
if( format & FULL_CTIME_NO_COLONS)
remove_char( ibuff, ':');
}
void DLL_FUNC full_ctime( char *buff, double jd, const int format)
{
full_ctimel( buff, (long double)jd - j2000, format);
}
void DLL_FUNC polar3_to_cartesian( double *vect, const double lon, const double lat)
{
double clat = cos( lat);
*vect++ = cos( lon) * clat;
*vect++ = sin( lon) * clat;
*vect = sin( lat);
}
double DLL_FUNC vector3_length( const double *vect)
{
return( sqrt( vect[0] * vect[0] + vect[1] * vect[1] + vect[2] * vect[2]));
}
double DLL_FUNC dot_product( const double *a, const double *b)
{
return( a[0] * b[0] + a[1] * b[1] + a[2] * b[2]);
}
double DLL_FUNC normalize_vect3( double *vect)
{
const double d2 = vect[0] * vect[0] + vect[1] * vect[1]
+ vect[2] * vect[2];
const double d = sqrt( d2);
if( d)
{
vect[0] /= d;
vect[1] /= d;
vect[2] /= d;
}
return( d);
}
/* Greenwich sidereal time from UT. Based on Meeus' _Astronomical
Algorithms_, pp 87-88 (2nd edition). Note that UT0 should be
used, the version that reflects the earth's current rotational
state. (UTC comes close, but leap seconds are inserted so that
each second can be equal in length, rather than "stretching" each
second as the earth slows down. The difference is kept within one
second, and can be ignored for many purposes.) */
double DLL_FUNC green_sidereal_time( double jd_ut)
{
double t_cen, rval, base_t;
jd_ut -= 2451545.0; /* set relative to 2000.0 */
t_cen = jd_ut / 36525.; /* convert to julian centuries */
base_t = floor( jd_ut);
jd_ut -= base_t;
rval = 280.46061837 + 360.98564736629 * jd_ut + .98564736629 * base_t +
t_cen * t_cen * (3.87933e-4 - t_cen / 38710000.);
/* See p 84, in Meeus: the following should get apparent */
/* Greenwich sidereal time: */
return( rval * pi / 180.);
}
void DLL_FUNC vector_cross_product( double *xprod, const double *a, const double *b)
{
xprod[0] = a[1] * b[2] - a[2] * b[1];
xprod[1] = a[2] * b[0] - a[0] * b[2];
xprod[2] = a[0] * b[1] - a[1] * b[0];
}