This repository has been archived by the owner on Oct 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedge_detection.py
68 lines (56 loc) · 2.42 KB
/
edge_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# python 3.9
# requirements bisa diinstall dengan pip install -r requirements.txt
from PIL import Image
# fungsi untuk menghitung L2 norm
def calculateL2Norm(dx, dy):
return (dx ** 2 + dy ** 2) ** 0.5
# fungsi untuk menggabung 2 gambar
def combineImage(img1, img2):
result = Image.new('RGB', (img1.width + img2.width, img1.height))
result.paste(img1, (0, 0))
result.paste(img2, (img1.width, 0))
return result
# fungsi utama, img adalah gambar yang ingin diteteksi
# boundary adalah batas penentu good value percobaan
# yang saya lakukan adalah antara 5-50
def predictObjectEdge(img, boundary):
# mengubah menjadi greyscale
img_grey = img.convert('L')
img_result = Image.new('L', img_grey.size)
# main loop
for x in range(1, img_grey.width-1):
for y in range(1, img_grey.height-1):
# mengambil pixel tengah dan sekitarnya
currentpixel = img_grey.getpixel((x, y))
leftpixel = img_grey.getpixel((x - 1, y))
rightpixel = img_grey.getpixel((x + 1, y))
toppixel = img_grey.getpixel((x, y - 1))
bottompixel = img_grey.getpixel((x, y + 1))
# menghitung dx,dy, dan L2 norm
dx = (abs(leftpixel - currentpixel) + abs(rightpixel - currentpixel))/2
dy = (abs(toppixel - currentpixel) + abs(bottompixel - currentpixel))/2
norm = calculateL2Norm(dx, dy)
# jika nilainya lebih dari boundary
# maka merupakan edge dan diberi warna putih
# jika kurang maka bukan edge dan diberi warna hitam
if norm > boundary :
img_result.putpixel((x, y), 255)
else:
img_result.putpixel((x, y), 0)
return img_result
if __name__ == '__main__':
# sunflower object
for i in range(5,26,5):
img = Image.open('sample_sunflower.jpg')
img_result = combineImage(img,predictObjectEdge(img, i))
img_result.save('./result/result_sunflower_' + str(i) + '.jpg')
# alpaca object
for i in range(5,26,5):
img = Image.open('./sample_alpaca.jpg')
img_result = combineImage(img, predictObjectEdge(img, i))
img_result.save('./result/result_alpaca_'+str(i)+'.jpg')
# person object
for i in range(5,26,5):
img = Image.open('./sample_person.jpeg')
img_result = combineImage(img, predictObjectEdge(img, i))
img_result.save('./result/result_person_'+str(i)+'.jpg')