generated from streamlit/streamlit-hello
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
54 lines (41 loc) · 1.99 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#importing functions for the machine learning model
import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import numpy as np
def retirement_prediction(pred_inputs):
#convert the forecast_results csv file into a dataframe
forecast_results = pd.read_csv('data/forecast_results.csv')
forecast_results.drop('Unnamed: 0', axis=1, inplace=True)
#converting the investor type into a numerical value
forecast_results_num = pd.get_dummies(forecast_results, columns=['Investor Type'])
#splitting the data into training and testing sets
X = forecast_results_num.drop('Final Value', axis=1)
y = forecast_results_num['Final Value']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#knn pipeline
k_pipe = Pipeline(steps=[('scaler', StandardScaler()),
('regression', KNeighborsRegressor())])
k_grid = GridSearchCV(estimator=k_pipe, n_jobs=-1, param_grid={'regression__n_neighbors': [3, 5, 7, 9, 11], 'regression__metric': ['euclidean', 'minkowski','manhattan'], 'regression__weights': ['uniform', 'distance']})
#added values extension to clear feature name warning
k_grid = k_grid.fit(X_train.values, y_train)
# k_pred = k_grid.predict(X_test)
prediction = k_grid.predict(pred_inputs)
return prediction
def IQR(dist):
return np.percentile(dist, 75) - np.percentile(dist, 25)
def Q1(dist):
return np.percentile(dist, 25)
def Q3(dist):
return np.percentile(dist, 75)
def confidence_interval(dist):
dist_avg = np.mean(dist)
dist_std = np.std(dist)
conf_top = ((dist_avg + (2 * dist_std))*100)
conf_bottom = ((dist_avg - (2 * dist_std))*100)
return round(conf_bottom,2), round(conf_top,2)