-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathinference.py
47 lines (38 loc) · 2.02 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from vis_corrector import Corrector
from types import SimpleNamespace
import argparse
import json
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Code for 'Woodpecker: Hallucination Correction for MLLMs Hallucination Correction for MLLMs'.")
parser.add_argument('--image-path', type=str, help="file path for the text to be corrected.")
parser.add_argument('--query', type=str, help="text query for MLLM")
parser.add_argument('--text', type=str, help="text from MLLM to be corrected")
parser.add_argument('--cache-dir', type=str, help="dir for caching intermediate image",
default='./cache_dir')
parser.add_argument('--detector-config', type=str, help="Path to the detector config, \
in the form of 'path/to/GroundingDINO_SwinT_OGC.py' ")
parser.add_argument('--detector-model', type=str, help="Path to the detector checkpoint, \
in the form of 'path/to/groundingdino_swint_ogc.pth' ")
parser.add_argument('--api-key', type=str, help="API key for GPT service.")
parser.add_argument('--api-base', type=str, help="API base link for GPT service.")
args = parser.parse_args()
args_dict = {
'api_key': args.api_key if args.api_key else "",
'api_base': args.api_base if args.api_base else "https://api.openai.com/v1",
'val_model_path': "Salesforce/blip2-flan-t5-xxl",
'qa2c_model_path': "khhuang/zerofec-qa2claim-t5-base",
'detector_config':args.detector_config,
'detector_model_path':args.detector_model,
'cache_dir': args.cache_dir,
}
model_args = SimpleNamespace(**args_dict)
corrector = Corrector(model_args)
sample = {
'img_path': args.image_path,
'input_desc': args.text,
'query': args.query
}
corrected_sample = corrector.correct(sample)
print(corrected_sample['output'])
with open('intermediate_view.json', 'w', encoding='utf-8') as file:
json.dump(corrected_sample, file, ensure_ascii=False, indent=4)