-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
265 lines (228 loc) · 8.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn as nn
from torch.nn import functional as F
import random
import os
import gradio as gr
block_size = 512
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
eval_iters = 50
batch_size = 32
max_iters = 20000000
learning_rate = 1e-4
n_embed = 384
n_layer = 12
n_head = 4
dropout = 0.2
with open('all_poems.txt', 'r', encoding="utf8") as file:
text = file.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
return x.to(device), y.to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x, y = get_batch(split)
logits, loss = model(x, y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# BigramLanguageModel
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed,head_size, bias=False)
self.query = nn.Linear(n_embed,head_size, bias=False)
self.value = nn.Linear(n_embed,head_size, bias=False)
self.dropout = nn.Dropout(dropout)
self.register_buffer("tril", torch.tril(torch.ones(block_size,block_size)))
def forward(self,x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2,-1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] ==0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim = -1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4* n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embed, n_head):
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self,x):
x = x + self.sa(self.ln1(x))
x = x+ self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed)
self.sa_head = MultiHeadAttention(4, n_embed//4)#MultiHeadAttention(4, n_embed//4)
self.ffwd = FeedFoward(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B,T = idx.shape
tok_emb = self.token_embedding_table(idx) #B,T,C
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))[None,:,:] #1,T,C
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits,targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:,-block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = BigramLanguageModel().to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10000, gamma=0.9)
# Checkpoint handling
def save_checkpoint(iteration, loss):
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'iteration': iteration,
'loss': loss,
'random_state': random.getstate(),
'torch_rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state() if torch.cuda.is_available() else None,
}
torch.save(checkpoint, 'checkpoint.pth')
print(f"Checkpoint saved at iteration {iteration}")
def load_checkpoint():
if not os.path.exists('checkpoint.pth'):
print("No checkpoint found. Starting training from the beginning.")
return 0
checkpoint = torch.load('checkpoint.pth')
model.load_state_dict(checkpoint['model_state_dict'])
print("Model loaded")
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])# uncomment for training
# scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
# iteration = checkpoint['iteration']
# random.setstate(checkpoint['random_state'])
# torch.set_rng_state(checkpoint['torch_rng_state'])
# if torch.cuda.is_available():
# torch.cuda.set_rng_state(checkpoint['cuda_rng_state'])
# print(f"Resuming training from iteration {iteration}")
# return iteration
# Main training loop
def train():
start_iter = load_checkpoint()
last_saved_loss = None
try:
for iter in range(start_iter, max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
# Generate some text
start_word = random.choice(text.split())
encoded_word = encode(start_word)
context = torch.tensor(encoded_word, dtype=torch.long, device=device).unsqueeze(0)
generated = model.generate(context, max_new_tokens=500)[0].tolist()
print("Generated text:", start_word,decode(generated))
# Get batch and calculate loss
xb, yb = get_batch('train')
logits, loss = model(xb, yb)
last_saved_loss = loss.item() # Update the last known loss
# Backpropagation
optimizer.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
if iter % 1000 == 0:
save_checkpoint(iter, last_saved_loss)
except KeyboardInterrupt:
print("Training interrupted. Saving checkpoint...")
save_checkpoint(iter, last_saved_loss)
except Exception as e:
print(f"An error occurred during training: {e}")
if last_saved_loss is not None:
save_checkpoint(iter, last_saved_loss)
else:
print("No loss value available. Saving checkpoint without loss information.")
save_checkpoint(iter, None)
print("Training completed.")
torch.save(model.state_dict(), 'final_model.pth')
def predict(prompt, max_tokens):
try:
# Encode the text and generate predictions
start_word = prompt
encoded_word = encode(start_word)
context = torch.tensor(encoded_word, dtype=torch.long, device=device).unsqueeze(0)
generated = model.generate(context, max_new_tokens=max_tokens)[0].tolist()
# Decode the generated output
output_text = decode(generated)
return output_text
except Exception as e:
return str(e)
interface = gr.Interface(
fn=predict, # Function to call
inputs=[gr.Textbox(label="Enter Text"), gr.Number(label="Enter Number")],
outputs=gr.Textbox(label="Generated Text") # Use gr.Textbox for text output
)
if __name__ == "__main__":
load_checkpoint()
interface.launch() #train() for training