-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_alg.py
137 lines (119 loc) · 6.36 KB
/
gen_alg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# gen_alg.py
# By Danny Noe
# Evolutionary Composition
# gen_alg.py contains the code for the genetic algorithm data and functions.
import random
import numpy
from deap import algorithms, base, creator, tools
from representation import representation, save_best_melodies, Melody
class algorithm_args:
"""
The algorithm_args object contains all of the algorithm arguments recieved on the command-line.
algorithm_args simplifies number of arguments that need to be sent to run_program()
"""
def __init__(self, algorithm: str, pop_size: int, ngen: int, mu: int, lambda_: int, cxpb: float, mutpb: float) -> None:
"""
Initializes the algorithm_args object with arguments given on the command-line
Input: algorithm: str, the name of the genetic algorithm | pop_size: int, the size of the initial population
ngen: int, the number of generations the ga will run for | mu: int, the number of individuals to select for the next generation
lambda_: int, sets number of children to produce at each generation | cxpb: float, the probability that an offspring is produced by crossover
mutpb: float, the probability that an offspring is produced by mutation
Output: algorithm_args object
"""
self.algorithm = algorithm
self.pop_size = pop_size
self.ngen = ngen
self.mu = mu
self.lambda_ = lambda_
self.cxpb = cxpb
self.mutpb = mutpb
return
def cx_music(input_mel1: Melody, input_mel2: Melody) -> tuple:
"""
cx_music() performs a crossover operation on two given melodies
Input: input_mel1: Melody, the first melody | input_mel2: Melody, the second melody
Output: child1: Melody, [[First half of input_mel2's measures], [Second half of input_mel1's measures]]
child2, Melody: [[First half of input_mel1's measures], [Second half of input_mel2's measures]]
"""
# Make temp copy
mel_copy = input_mel1.copy()
# Child 1
input_mel1.cross_mel(input_mel2, True)
# Child 2
input_mel2.cross_mel(mel_copy, False)
return input_mel1, input_mel2
def mut_melody(input_mel: Melody) -> tuple:
"""
mut_melody() mutates a given melody. The function iterates over the whole melody
performing a coin flip on each note determining if it should be pitch shifted up or down
Input: input_mel: Melody, the melody to be mutated
Output: input_mel: Melody, the mutated melody
"""
for measure in input_mel.melody_list:
for note in measure.measure_list:
if random.random() < 0.5:
if note.note_pitch != 84 and note.note_pitch != 128:
note.pitch_shift()
else:
if note.note_pitch != 60 and note.note_pitch != 128:
note.pitch_shift(up=False)
return input_mel,
def load_midi(population: list, toolbox, key: str) -> int:
"""
The load_midi() function reads MIDI files entered by the user from the ./midi_out/ directory
and adds them to the population
Input: population: list, the current deap population list | toolbox: Toolbox, the current deap Toolbox
key: str, the key signature the program is using
Output: population: list, the updated population with read MIDIs added | pop_size: int, the updated size of the population
"""
print("MIDI files saved to ./midi_out/ can be added to the population.")
print("Note: MIDIs written by this program in previous sessions work best.")
print("Note: Do not include the folder path.")
print("Note: The pop_size arg will be updated to include read files.")
more_input = True
while more_input:
# Handle the user's input
filename = input("Enter a MIDI file? (No to stop) ")
if filename.lower() == "no" or filename.lower() == "n":
more_input = False
break
else:
try:
new_pop_item = toolbox.melody(filename=filename)
population.append(new_pop_item)
except FileNotFoundError:
print("Error: File not found")
return len(population)
def run_genetic_algorithm(rep_obj, alg_args) -> tuple:
"""
The run_genetic_algorithm is the main method of the evolutionary composition project.
The method takes in all arguments, then runs the selected genetic algorithm.
After ngens, the best MIDIs are written to the ./midi_out/ directory
Input: rep_obj: representation, contains the necessary representation arguments
alg_args: algorithm_args, contains the necessary genetic algorithm arguments
Output: population: list, a deap population containing the last generation of melodies
hall_of_fame: deap.tools.support.ParetoFront, deap hall_of_fame object containing melodies the user rated 5/5
"""
# Fitness func has one weight, maximizing good melodies
creator.create("FitnessMax", base.Fitness, weights=(1.0, )) # weights must be tuples, but we only have parameter to maximize
creator.create("Melody", Melody, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
# Melody class has to registered to the deap toolbox
toolbox.register("melody", creator.Melody, key=rep_obj.key_signature) # the key signature must be passed to generate a melody
toolbox.register("population", tools.initRepeat, list, toolbox.melody)
toolbox.register("mate", cx_music)
toolbox.register("mutate", mut_melody)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", representation.evaluate_music, rep_obj)
population = toolbox.population(n=alg_args.pop_size)
alg_args.pop_size = load_midi(population, toolbox, rep_obj.key_signature)
hall_of_fame = tools.ParetoFront()
if alg_args.algorithm == "eaMuCommaLambda":
algorithms.eaMuCommaLambda(population, toolbox, alg_args.mu, alg_args.lambda_, alg_args.cxpb, alg_args.mutpb, alg_args.ngen, None, hall_of_fame)
elif alg_args.algorithm == "eaMuPlusLambda":
algorithms.eaMuPlusLambda(population, toolbox, alg_args.mu, alg_args.lambda_, alg_args.cxpb, alg_args.mutpb, alg_args.ngen, None, hall_of_fame)
elif alg_args.algorithm == "eaSimple":
algorithms.eaSimple(population, toolbox, alg_args.cxpb, alg_args.mutpb, alg_args.ngen, None, hall_of_fame)
save_best_melodies(rep_obj, population, hall_of_fame)
print("The best melodies have been saved to the ./midi_out/ directory.")
return population, hall_of_fame