forked from cjabradshaw/SahulHuman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathancienthumanfound_gsa_sim_func.v2.R
395 lines (342 loc) · 15.6 KB
/
ancienthumanfound_gsa_sim_func.v2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#####################################################################################
## global sensitivity analysis using Latin hypercube sampling for stochastic
## ancient human founding population model for Sahul
##
## Corey Bradshaw
## September 2018 / updated February 2019
##
## testing effect on probability of quasi-extinction (< 25 females)
## of modifying the following variables:
##
## Bentley fertility total
## set in model: 'fert.bentley <- 4.69/2' = 2.345; test random uniform sample between 2.1105 and 2.5795 (10%)
##
## change assumed SD of survival
## set in model: Sx.sd <- 0.05; test random uniform sample between 0.025 and 0.10
##
## change initial infant mortality rate — Siler hazard model parameter a1
## set in model: a1 <- 0.422; test random uniform sample between 0.3 and 0.5
##
## change rate of mortality decline — Siler hazard model parameter a2
## set in model: a2 <- 0.013; test random uniform sample between 0.010 and 0.015
##
## change initial adult mortality rate — Siler hazard model parameter a3
## set in model: a3 <- 1.47e-04; test random uniform sample between 0.0001323 and 0.0001617 (10%)
##
## change age-independent mortality — Siler hazard model parameter b1
## set in model: b1 <- 1.131; test random uniform sample between 1.0 and 2.0
##
## change rate of mortality increase — Siler hazard model parameter b3
## set in model: b3 <- 0.086; test random uniform sample between 0.06 and 0.095
##
## change modifier to survival with > carrying capacity
## set in model: surv.min <- 0.98; test random uniform sample between 0.95 and 0.99
##
## change threshold of extinction probability
## set in model: min.thresh <- 50; test random uniform sample between 25 and 75 (/2 for females)
##
## change probability of catastrophe
## set in model to 'cat.numerator <- 0.14'; test random uniform sample between 0.1 and 0.2
##
## change intensity of catastrophe
## set in model to 'cat.intensity <- 0.5'; test random uniform sample between 0.25 and 0.75
##
## change low-density estimate for calculation of carrying capacity
## set in model 'start.K' <- 47000; test random uniform sample between 50% (23500) and 200% (94000)
#####################################################################################
## Remove everything
rm(list = ls())
## Load libraries
library(iterators)
library(snow)
library(doSNOW)
library(foreach)
library(lhs)
library(data.table)
## source (update when appropriate)
source("~/Documents/Papers/Other/Global human population/ms/PNAS/R1/matrixOperators.r")
## set working directory
setwd("~/Documents/Papers/Palaeo/Sahul/Aus human age-structured model/analysis/gsa")
## Set up parallel processing (nproc is the number of processing cores to use)
nproc <- 6
cl.tmp = makeCluster(rep('localhost',nproc), type='SOCK')
registerDoSNOW(cl.tmp)
getDoParWorkers()
## ancient human founding population simulation function
ahfp_sim <- function(input, dir.nm, rowNum) {
## assign all parameter values
for (i in 1:ncol(input)) {assign(names(input)[i], input[,i])}
####################################################
## necessary input calculations for stochastic model
####################################################
## source (update when appropriate)
source("matrixOperators.r")
## define necessary functions
# stochastic beta sampler for a survival vector (replaces above function for faster processing)
stoch.surv.func <- function(mu, var) {
Sx <- rbeta(length(mu), (((1 - mu) / var - 1 / mu) * mu ^ 2), ((((1 - mu) / var - 1 / mu) * mu ^ 2)*(1 / mu - 1)))
return(params=Sx)
}
## import necessary data (place in appropriate directory)
npp.sah <- read.table("ClimateSahul_Npp.csv", header=T, sep=",")
dat.world13 <- read.table("world2013lifetable.csv", header=T, sep=",") #fertility data
# net primary productivity (NPP; kg C/yr/m2)
npp.nsah <- subset(npp.sah, Lat..degree. <= 0 & Lat..degree. >= -14)
npp.nsah.med <- as.numeric(apply(npp.nsah[,-c(1,2)], MARGIN=2, quantile, probs=0.5))
npp.nsah.lo <- as.numeric(apply(npp.nsah[,-c(1,2)], MARGIN=2, quantile, probs=0.25))
npp.nsah.up <- as.numeric(apply(npp.nsah[,-c(1,2)], MARGIN=2, quantile, probs=0.75))
npp.nsah.dat <- as.data.frame(t(data.frame(npp.nsah.lo,npp.nsah.med,npp.nsah.up)))
rownames(npp.nsah.dat) <- c("lo","med","up")
colnames(npp.nsah.dat) <- colnames(npp.nsah[,-c(1,2)])
year.vec <- 120000:0
yr1000 <- seq(120,0,-1)
npp.med.interp <- approx(yr1000*1000, npp.nsah.dat[2,], xout=year.vec, method="linear")
npp.lo.interp <- approx(yr1000*1000, npp.nsah.dat[1,], xout=year.vec, method="linear")
npp.up.interp <- approx(yr1000*1000, npp.nsah.dat[3,], xout=year.vec, method="linear")
K.dat <- data.frame(year.vec,npp.lo.interp$y,npp.med.interp$y,npp.up.interp$y)
colnames(K.dat) <- c("year","npp.lo","npp.med","npp.up")
K.dat$npp.lo.sc1 <- scale(K.dat$npp.lo + abs(min(K.dat$npp.lo)), scale=F, center=F)
K.dat$npp.med.sc1 <- scale(K.dat$npp.med + abs(min(K.dat$npp.lo)), scale=F, center=F)
K.dat$npp.up.sc1 <- scale(K.dat$npp.up + abs(min(K.dat$npp.lo)), scale=F, center=F)
K.dat$npp.lo.sc <- K.dat$npp.lo.sc1/max(K.dat$npp.med.sc1)
K.dat$npp.med.sc <- K.dat$npp.med.sc1/max(K.dat$npp.med.sc1)
K.dat$npp.up.sc <- K.dat$npp.up.sc1/max(K.dat$npp.med.sc1)
#start.K <- 47000 # Guatney & Holliday 2015
K.dat$K.lo <- round(start.K * 1/K.dat$npp.lo.sc, 0)
K.dat$K.med <- (K.dat$npp.med.sc/K.dat$npp.lo.sc) * K.dat$K.lo
K.dat$K.up <- (K.dat$npp.up.sc/K.dat$npp.lo.sc) * K.dat$K.lo
# Siler hazard h(x) (Gurven et al. 2007)
#a1 <- 0.422 # initial infant mortality rate (also known as αt)
#b1 <- 1.131 # rate of mortality decline (also known as bt)
#a2 <- 0.013 # age-independent mortality (exogenous mortality due to environment); also known as ct
#a3 <- 1.47e-04 # initial adult mortality rate (also known as βt)
#b3 <- 0.086 # rate of mortality increase
longev <- 80
x <- seq(0,longev,1) # age vector
h.x <- a1 * exp(-b1*x) + a2 + a3 * exp(b3 * x) # Siler's hazard model
l.x <- exp((-a1/b1) * (1 - exp(-b1*x))) * exp(-a2 * x) * exp(a3/b3 * (1 - exp(b3 * x))) # Siler's survival (proportion surviving) model
l.inf <- exp(-a1/b1) # survival at infinite time
T.m <- 1/b1 # time constant at which maturity is approached
h.m <- a2 # hazard for mature animals
l.m <- exp(-a2*x) # survival
h.s <- a3*exp(b3*x) # hazard for senescence
l.s <- exp((a3/b3)*(1 - exp(b3*x))) # survival for senescence
f.x <- a3*exp(b3*x)*exp((a3/b3)/(1-exp(b3*x))) # probability density function
T.s <- (1/b3) # modal survival time
init.pop <- 10000
lx <- round(init.pop*l.x,0)
len.lx <- length(lx)
dx <- lx[1:(len.lx-1)]-lx[2:len.lx]
qx <- dx/lx[1:(length(lx)-1)]
Sx <- 1 - qx
sx <- lx[2:len.lx]/lx[1:(len.lx-1)]
mx <- 1 - sx
Lx <- (lx[1:(len.lx-1)] + lx[2:len.lx])/2
ex <- rev(cumsum(rev(Lx)))/lx[-len.lx]
ex.avg <- ex + x[-len.lx]
# set SD for Sx
#Sx.sd <- 0.05 # can set to any value
# fertility (Walker et al. 2006)
primiparity.walker <- c(17.7,18.7,19.5,18.5,18.5,18.7,25.7,19,20.5,18.8,17.8,18.6,22.2,17,16.2,18.4)
prim.mean <- round(mean(primiparity.walker),0)
prim.lo <- round(quantile(primiparity.walker,probs=0.025),0)
prim.hi <- round(quantile(primiparity.walker,probs=0.975),0)
fert.world13 <- dat.world13$m.f
fert.trunc <- fert.world13[1:(longev+1)]
pfert.trunc <- fert.trunc/sum(fert.trunc)
#fert.bentley <- 4.69/2 # Bentley 1985 for !Kung
fert.vec <- fert.bentley * pfert.trunc
## construct base matrices
stages <- len.lx
popmat <- matrix(0,nrow=stages,ncol=stages)
colnames(popmat) <- x
rownames(popmat) <- x
popmat[1,] <- fert.vec
diag(popmat[2:stages,]) <- Sx
popmat[stages,stages] <- 0 # Sx[stages-1]
popmat.orig <- popmat ## save original matrix
## initial population vector
pop.found <- 700 # founding population size
init.vec <- stable.stage.dist(popmat) * pop.found
## use natural-mortality popmat for set-up parameters
gen.l <- G.val(popmat.orig, stages) # mean generation length
#cat.numerator <- 0.14
cat.pr <- cat.numerator/gen.l # probability of catastrophe (Reed et al. 2003)
#cat.intensity <- 0.5
#initial colonisation window
col.old <- 60000
col.yng <- 50000
# generations to project
gen.proj <- 100
# set quasi-extinction threshold
#min.thresh <- 50
## set time limit for projection in 1-yr increments
yr.st <- round(runif(iter,col.yng,col.old), 0)
#************************
yr.end <- yr.st - round(gen.proj*gen.l, 0) # set projection end date
#************************
t <- (yr.st - yr.end)
## set population storage matrices
n.mat <- matrix(0,nrow=stages,ncol=(t[1]+1))
n.mat[,1] <- init.vec
popmat <- popmat.orig
## iterate projection
#iter <- 1000
itdiv <- iter/100
# set storage matrices & vectors
n.sums.mat <- matrix(data = 0, nrow = iter, ncol = (t[1]+1))
for (e in 1:iter) {
# K
yr.st.sub <- which(K.dat$year == yr.st[e])
npp.sc.st <- runif(1, K.dat$npp.lo.sc[yr.st.sub], K.dat$npp.up.sc[yr.st.sub])
K.run <- round((npp.sc.st / K.dat$npp.med.sc[yr.st.sub]) * K.dat$K.med[yr.st.sub:(yr.st.sub+t[e])], 0) # this iteration's realised K series
yr.vec.run <- yr.st[e]:yr.end[e]
## reset popmat
popmat <- popmat.orig
## set up projection loop
for (i in 1:t[e]) {
## reconstruct popmat with stochastic elements
popmat[1, ] <- pfert.trunc * rnorm(1, fert.bentley,0.05*fert.bentley) # fertility sampler
diag(popmat[2:(stages), ]) <- ((ifelse(sum(n.mat[,i], na.rm=T) > K.run[i], surv.min, 1)) * (stoch.surv.func(Sx, Sx.sd^2))[-stages]) # survival sampler
# survival (+ catastrophic mortality at 50%)
if ((rbinom(1, 1, cat.pr)) == 1) {
diag(popmat[2:(stages), ]) <- (0.5* (diag(popmat[2:(stages), ])))}
popmat[stages,stages] <- 0
## project over interval
n.mat[,i+1] <- popmat %*% (n.mat[,i])
#print(i)
}
n.sums.mat[e,] <- as.vector(colSums(n.mat))
if (e %% itdiv==0) print(e)
}
# N confidence limits
n.mn <- apply(n.sums.mat, MARGIN=2, mean, na.rm=T) # mean over all iterations
n.up <- apply(n.sums.mat, MARGIN=2, quantile, probs=0.975, na.rm=T) # upper over all iterations
n.lo <- apply(n.sums.mat, MARGIN=2, quantile, probs=0.025, na.rm=T) # lower over all iterations
n.min <- apply(n.sums.mat, MARGIN=1, min, na.rm=T) # minimum over all projected years
pr.ext <- pr.ext <- sum(ifelse(n.min < (min.thresh/2), 1, 0))/iter
# save
input$pr.ext <- pr.ext
save.nm <- paste0('res',sprintf("%09.0f", rowNum))
assign(save.nm, input)
save(list=save.nm,file=paste(dir.nm,save.nm,sep='/'))
}
## parameter ranges
ranges <- list()
ranges$fert.bentley <- c(2.1105, 2.5795)
ranges$Sx.sd <- c(0.025, 0.100)
ranges$a1 <- c(0.3, 0.5)
ranges$a2 <- c(0.010, 0.015)
ranges$a3 <- c(0.0001323, 0.0001617)
ranges$b1 <- c(1.0, 2.0)
ranges$b3 <- c(0.060, 0.095)
ranges$surv.min <- c(0.95, 0.99)
ranges$min.thresh <- c(25, 75)
ranges$cat.numerator <- c(0.1, 0.2)
ranges$cat.intensity <- c(0.25, 0.75)
ranges$start.K <- c(23500, 94000)
## create hypercube
nSamples <- 1000
lh <- data.frame(randomLHS(n=nSamples, k=length(ranges)))
names(lh) <- names(ranges)
## convert parameters to required scale
for (i in 1:ncol(lh)) {
par <- names(lh)[i]
lh[,par] <- qunif(lh[,i], min=ranges[[par]][1], max=ranges[[par]][2]) ## continuous
}
## number of iterations for each parameter set
lh$iter <- 100
## folder for saving the results of each row
## we could just store in memory, but then if something breaks we will lose the lot
dir.nm <- 'test2'
dir.create(dir.nm)
## run in parallel
#res <- foreach(rowNum=1:nrow(lh),.verbose=F) %dopar% {ahfp_sim(input=lh[rowNum,],dir.nm=dir.nm,rowNum=rowNum)}
res <- foreach(rowNum=1:nrow(lh),.verbose=F) %do% {ahfp_sim(input=lh[rowNum,],dir.nm=dir.nm,rowNum=rowNum)}
## retrieve results
res.nms <- list.files(dir.nm)
res.list <- lapply(res.nms, function(x) {load(paste(dir.nm,x,sep='/')) ; print(x) ; return(eval(as.name(x)))})
dat <- rbindlist(res.list)
head(dat)
sum(is.na(dat$pr.ext))
## BRT
dat.nona <- na.omit(dat) # remove NAs
library(dismo)
library(gbm)
brt.fit <- gbm.step(dat.nona, gbm.x = attr(dat.nona, "names")[1:12], gbm.y = attr(dat.nona, "names")[14], family="gaussian", tolerance = 0.0001, learning.rate = 0.01, bag.fraction=0.75, tree.complexity = 2)
summary(brt.fit)
gbm.plot(brt.fit)
gbm.plot.fits(brt.fit)
## post-hoc relationships for quantifying magnitude of change in pr.ext with changes in explanatory variables
# set in model: b1 <- 1.131; test random uniform sample between 1.0 and 2.0
plot(dat$b1, dat$pr.ext, pch=19, xlab="age-independent mortality (b1)", ylab="probability of extinction")
#plot(dat$b1, logit(dat$pr.ext), pch=19, xlab="age-independent mortality (b1)", ylab="logit probability of extinction")
fit.b1 <- lm((dat$pr.ext) ~ dat$b1)
abline(fit.b1, lty=2, col="red")
# 50% higher b1 ...
b1 <- 1.131
b1.prime <- 1.5*b1
abline(v=b1.prime, lty=3)
pr.ext.b1.prime <- dat$pr.ext[which(dat$b1 >= 0.95*b1.prime & dat$b1 <= 1.05*b1.prime)]
mean.b1.prime <- mean(pr.ext.b1.prime)
mean.b1.prime
abline(v=b1, lty=3)
pr.ext.b1 <- dat$pr.ext[which(dat$b1 >= 0.95*b1 & dat$b1 <= 1.05*b1)]
mean.b1 <- mean(pr.ext.b1)
mean.b1
(mean.b1-mean.b1.prime)/mean.b1 * 100 # % reduction
# bootstrap
iter <- 100000
pc.red.b1 <- rep(0,iter)
for (i in 1:iter) {
b1.boot <- sample(pr.ext.b1, 1, replace=T)
b1.prime.boot <- sample(pr.ext.b1.prime, 1, replace=T)
pc.red.b1[i] <- (b1.boot-b1.prime.boot)/b1.boot * 100
}
hist(pc.red.b1)
mean(pc.red.b1[is.finite(pc.red.b1)], na.rm=T)
# conclusion: 50% reduction in age-independent mortality -> 68% reduction in probability of extinction
# set in model: 'fert.bentley <- 4.69/2' = 2.345; test random uniform sample between 2.1105 and 2.5795 (10%)
plot(dat$fert.bentley, dat$pr.ext, pch=19, xlab="total fertility (F)", ylab="probability of extinction")
fit.F <- lm((dat$pr.ext) ~ dat$fert.bentley)
abline(fit.F, lty=2, col="red")
# 10% lower F ...
F <- 2.345
F.prime <- 0.9*F
abline(v=F.prime, lty=3)
pr.ext.F.prime <- dat$pr.ext[which(dat$fert.bentley >= 0.95*F.prime & dat$fert.bentley <= 1.05*F.prime)]
mean.F.prime <- mean(pr.ext.F.prime)
mean.F.prime
abline(v=F, lty=3)
pr.ext.F <- dat$pr.ext[which(dat$fert.bentley >= 0.95*F & dat$fert.bentley <= 1.05*F)]
mean.F <- mean(pr.ext.F)
mean.F
(mean.F.prime-mean.F)/mean.F*100 # % increase
# bootstrap
iter <- 100000
pc.red.F <- rep(0,iter)
for (i in 1:iter) {
F.boot <- sample(pr.ext.F, 1, replace=T)
F.prime.boot <- sample(pr.ext.F.prime, 1, replace=T)
pc.red.F[i] <- (F.prime.boot-F.boot)/F.boot * 100
}
hist(pc.red.F)
mean(pc.red.F[is.finite(pc.red.F)], na.rm=T)
# conclusion: 10% reduction in fertility -> 773% increase in probability of extinction
## set in model: a1 <- 0.422; test random uniform sample between 0.3 and 0.5
plot(dat$a1, dat$pr.ext, pch=19, xlab="initial infant mortality (a1)", ylab="probability of extinction")
fit.a1 <- lm((dat$pr.ext) ~ dat$a1)
abline(fit.a1, lty=2, col="red")
## set in model: a2 <- 0.013; test random uniform sample between 0.010 and 0.015
plot(dat$a2, dat$pr.ext, pch=19, xlab="mortality decline rate (a2)", ylab="probability of extinction")
fit.a2 <- lm((dat$pr.ext) ~ dat$a2)
abline(fit.a2, lty=2, col="red")
## set in model to 'cat.numerator <- 0.14'; test random uniform sample between 0.1 and 0.2
plot(dat$cat.numerator, dat$pr.ext, pch=19, xlab="Pr(catastrophe) (Pc)", ylab="probability of extinction")
fit.Pc <- lm((dat$pr.ext) ~ dat$cat.numerator)
abline(fit.Pc, lty=2, col="red")
## set in model 'start.K' <- 47000; test random uniform sample between 50% (23500) and 200% (94000)
plot(dat$start.K, dat$pr.ext, pch=19, xlab="nadir population density (Dmin)", ylab="probability of extinction")
fit.Dmin <- lm((dat$pr.ext) ~ dat$start.K)
abline(fit.Dmin, lty=2, col="red")
summary(fit.Dmin)