-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
218 lines (192 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
(c) Research Group CAMMA, University of Strasbourg, IHU Strasbourg, France
Website: http://camma.u-strasbg.fr
"""
import argparse
import os
import random
import sys
import time
from tqdm import tqdm
import numpy as np
from collections import OrderedDict
from pprint import pprint, pformat
import torch
import torch.nn as nn
import torch.nn.functional as F
import ivtmetrics
class AverageMeter(object):
"""
Computes and stores the average and current value
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1.):
self.val = val
self.sum += val
self.count += n
self.avg = self.sum / self.count
def update_acc(self, val, n=1.):
self.val = val/n
self.sum += val
self.count += n
self.avg = self.sum / self.count
# get video list
def get_video_list(args):
video_split = split_selector(args.split)
train_videos = sum([v for k,v in video_split.items() if k!=args.fold], []) if 'crossval' in args.split else video_split['train']
test_videos = sum([v for k,v in video_split.items() if k==args.fold], []) if 'crossval' in args.split else video_split['test']
if 'crossval' in args.split:
val_videos = train_videos[-5:]
train_videos = train_videos[:-5]
else:
val_videos = video_split['val']
train_videos = sorted(train_videos)
val_videos = sorted(val_videos)
test_videos = sorted(test_videos)
# in records format
train_records = ['VID{}'.format(str(v).zfill(2)) for v in train_videos]
val_records = ['VID{}'.format(str(v).zfill(2)) for v in val_videos]
test_records = ['VID{}'.format(str(v).zfill(2)) for v in test_videos]
return train_records, val_records, test_records
#%% helper functions
def get_weight_balancing(case='cholect50'):
switcher = {
'cholect50': {
'tool' : [0.08084519, 0.81435289, 0.10459284, 2.55976864, 1.630372490, 1.29528455],
'verb' : [0.31956735, 0.07252306, 0.08111481, 0.81137309, 1.302895320, 2.12264151, 1.54109589, 8.86363636, 12.13692946, 0.40462028],
'target': [0.06246232, 1.00000000, 0.34266478, 0.84750219, 14.80102041, 8.73795181, 1.52845100, 5.74455446, 0.285756500, 12.72368421, 0.6250808, 3.85771277, 6.95683453, 0.84923888, 0.40130032]
},
'cholect50-challenge': {
'tool': [0.08495163, 0.88782288, 0.11259564, 2.61948830, 1.784866470, 1.144624170],
'verb': [0.39862805, 0.06981640, 0.08332925, 0.81876204, 1.415868390, 2.269359150, 1.28428410, 7.35822511, 18.67857143, 0.45704490],
'target': [0.07333818, 0.87139287, 0.42853950, 1.00000000, 17.67281106, 13.94545455, 1.44880997, 6.04889590, 0.326188650, 16.82017544, 0.63577586, 6.79964539, 6.19547658, 0.96284208, 0.51559559]
},
'cholect45-crossval': {
1: {
'tool': [0.08165644, 0.91226868, 0.10674758, 2.85418156, 1.60554885, 1.10640067],
'verb': [0.37870137, 0.06836869, 0.07931255, 0.84780024, 1.21880342, 2.52836879, 1.30765704, 6.88888889, 17.07784431, 0.45241117],
'target': [0.07149629, 1.0, 0.41013597, 0.90458015, 13.06299213, 12.06545455, 1.5213205, 5.04255319, 0.35808332, 45.45205479, 0.67493897, 7.04458599, 9.14049587, 0.97330595, 0.52633249]
},
2: {
'tool': [0.0854156, 0.89535362, 0.10995253, 2.74936869, 1.78264429, 1.13234529],
'verb': [0.36346863, 0.06771776, 0.07893261, 0.82842725, 1.33892161, 2.13049748, 1.26120359, 5.72674419, 19.7, 0.43189126],
'target': [0.07530655, 0.97961957, 0.4325135, 0.99393438, 15.5387931, 14.5951417, 1.53862569, 6.01836394, 0.35184462, 15.81140351, 0.709506, 5.79581994, 8.08295964, 1.0, 0.52689272]
},
3: {
"tool" : [0.0915228, 0.89714969, 0.12057004, 2.72128174, 1.94092281, 1.12948557],
"verb" : [0.43636862, 0.07558554, 0.0891017, 0.81820519, 1.53645582, 2.31924198, 1.28565657, 6.49387755, 18.28735632, 0.48676763],
"target" : [0.06841828, 0.90980736, 0.38826607, 1.0, 14.3640553, 12.9875, 1.25939394, 5.38341969, 0.29060227, 13.67105263, 0.59168565, 6.58985201, 5.72977941, 0.86824513, 0.47682423]
},
4: {
'tool': [0.08222218, 0.85414117, 0.10948695, 2.50868784, 1.63235867, 1.20593318],
'verb': [0.41154261, 0.0692142, 0.08427214, 0.79895288, 1.33625219, 2.2624166, 1.35343681, 7.63, 17.84795322, 0.43970609],
'target': [0.07536126, 0.85398445, 0.4085784, 0.95464422, 15.90497738, 18.5978836, 1.55875831, 5.52672956, 0.33700863, 15.41666667, 0.74755423, 5.4921875, 6.11304348, 1.0, 0.50641118],
},
5: {
'tool': [0.0804654, 0.92271157, 0.10489631, 2.52302243, 1.60074906, 1.09141982],
'verb': [0.50710436, 0.06590258, 0.07981184, 0.81538866, 1.29267277, 2.20525568, 1.29699248, 7.32311321, 25.45081967, 0.46733895],
'target': [0.07119395, 0.87450495, 0.43043372, 0.86465981, 14.01984127, 23.7114094, 1.47577277, 5.81085526, 0.32129865, 22.79354839, 0.63304067, 6.92745098, 5.88833333, 1.0, 0.53175798]
}
},
'cholect50-crossval': {
1:{
'tool': [0.0828851, 0.8876, 0.10830995, 2.93907285, 1.63884786, 1.14499484],
'verb': [0.29628942, 0.07366916, 0.08267971, 0.83155428, 1.25402434, 2.38358209, 1.34938741, 7.56872038, 12.98373984, 0.41502079],
'target': [0.06551745, 1.0, 0.36345711, 0.82434783, 13.06299213, 8.61818182, 1.4017744, 4.62116992, 0.32822238, 45.45205479, 0.67343211, 4.13200498, 8.23325062, 0.88527215, 0.43113306],
},
2:{
'tool': [0.08586283, 0.87716737, 0.11068887, 2.84210526, 1.81016949, 1.16283571],
'verb': [0.30072757, 0.07275414, 0.08350168, 0.80694143, 1.39209979, 2.22754491, 1.31448763, 6.38931298, 13.89211618, 0.39397505],
'target': [0.07056703, 1.0, 0.39451115, 0.91977006, 15.86206897, 9.68421053, 1.44483706, 5.44378698, 0.31858714, 16.14035088, 0.7238395, 4.20571429, 7.98264642, 0.91360477, 0.43304307],
},
3:{
'tool': [0.09225068, 0.87856006, 0.12195811, 2.82669323, 1.97710987, 1.1603972],
'verb': [0.34285159, 0.08049804, 0.0928239, 0.80685714, 1.56125608, 2.23984772, 1.31471136, 7.08835341, 12.17241379, 0.43180428],
'target': [0.06919395, 1.0, 0.37532866, 0.9830703, 15.78801843, 8.99212598, 1.27597765, 5.36990596, 0.29177312, 15.02631579, 0.64935557, 5.08308605, 5.86643836, 0.86580743, 0.41908257],
},
4:{
'tool': [0.08247885, 0.83095539, 0.11050268, 2.58193042, 1.64497676, 1.25538881],
'verb': [0.31890981, 0.07380354, 0.08804592, 0.79094077, 1.35928144, 2.17017208, 1.42947103, 8.34558824, 13.19767442, 0.40666428],
'target': [0.07777646, 0.95894072, 0.41993829, 0.95592153, 17.85972851, 12.49050633, 1.65701092, 5.74526929, 0.33763901, 17.31140351, 0.83747083, 3.95490982, 6.57833333, 1.0, 0.47139615],
},
5:{
'tool': [0.07891691, 0.89878025, 0.10267677, 2.53805556, 1.60636428, 1.12691169],
'verb': [0.36420961, 0.06825313, 0.08060635, 0.80956984, 1.30757221, 2.09375, 1.33625848, 7.9009434, 14.1350211, 0.41429631],
'target': [0.07300329, 0.97128713, 0.42084942, 0.8829883, 15.57142857, 19.42574257, 1.56521739, 5.86547085, 0.32732733, 25.31612903, 0.70171674, 4.55220418, 6.13125, 1.0, 0.48528321],
}
}
}
return switcher.get(case)
def split_selector(case='cholect50'):
switcher = {
'cholect50': {
'train': [1, 15, 26, 40, 52, 65, 79, 2, 18, 27, 43, 56, 66, 92, 4, 22, 31, 47, 57, 68, 96, 5, 23, 35, 48, 60, 70, 103, 13, 25, 36, 49, 62, 75, 110],
'val': [8, 12, 29, 50, 78],
'test': [6, 51, 10, 73, 14, 74, 32, 80, 42, 111]
},
'cholect50-challenge': {
'train': [1, 15, 26, 40, 52, 79, 2, 27, 43, 56, 66, 4, 22, 31, 47, 57, 68, 23, 35, 48, 60, 70, 13, 25, 49, 62, 75, 8, 12, 29, 50, 78, 6, 51, 10, 73, 14, 32, 80, 42],
'val': [5, 18, 36, 65, 74],
'test': [92, 96, 103, 110, 111]
},
'cholect45-crossval': {
1: [79, 2, 51, 6, 25, 14, 66, 23, 50,],
2: [80, 32, 5, 15, 40, 47, 26, 48, 70,],
3: [31, 57, 36, 18, 52, 68, 10, 8, 73,],
4: [42, 29, 60, 27, 65, 75, 22, 49, 12,],
5: [78, 43, 62, 35, 74, 1, 56, 4, 13,],
},
'cholect50-crossval': {
1: [79, 2, 51, 6, 25, 14, 66, 23, 50, 111],
2: [80, 32, 5, 15, 40, 47, 26, 48, 70, 96],
3: [31, 57, 36, 18, 52, 68, 10, 8, 73, 103],
4: [42, 29, 60, 27, 65, 75, 22, 49, 12, 110],
5: [78, 43, 62, 35, 74, 1, 56, 4, 13, 92],
},
}
return switcher.get(case)
# get component wise class weights
def get_component_weights(args):
if "crossval" in args.split:
wt_dict = get_weight_balancing(case=args.split)[args.fold]
else:
wt_dict = get_weight_balancing(case=args.split)
return wt_dict['tool'], wt_dict['verb'], wt_dict['target']
# binary cross entropy loss
def bce_loss(preds, gt, pos_wt=None):
wt = torch.tensor(pos_wt, device=gt.device) if pos_wt != None else None
return F.binary_cross_entropy_with_logits(preds, gt, pos_weight=wt)
def freeze_net(net, exclude_options=["decoder"]):
count_grad_vars = 0
for k,v in net.named_parameters():
if any([j in k for j in exclude_options]):
count_grad_vars += 1
continue
v.requires_grad = False
def display_net_params(net, show_grad=False):
for i,j in net.named_parameters():
if show_grad:
print(f"{i} >> {j.requires_grad}")
else:
print(i)
# load model weights and test
def load_model_weights(net, checkpoint_name, skip_module="decoder"):
net_dict = net.state_dict()
checkpoint = torch.load(checkpoint_name)
if 'model' in checkpoint: state_dict = checkpoint['model']
else: state_dict = checkpoint
state_dict_new = OrderedDict({})
for k,v in state_dict.items():
state_dict_new[k] = state_dict[k]
net_dict.update(state_dict_new)
net.load_state_dict(net_dict)
print("Pretrained model loading is successful!")
# count params
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)