-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcfp.html
266 lines (239 loc) · 13.1 KB
/
cfp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="">
<meta name="author" content="">
<title>Detecting Objects in Aerial Images (DOAI)</title>
<!-- Bootstrap core CSS -->
<link href="vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<!-- Custom fonts for this template -->
<link href="vendor/fontawesome-free/css/all.min.css" rel="stylesheet" type="text/css">
<link href='https://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800'
rel='stylesheet' type='text/css'>
<!-- Custom styles for this template -->
<link href="css/myclean-blog.min.css" rel="stylesheet">
<link href="css/common.css" rel="stylesheet">
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-expand-lg navbar-light fixed-top" id="mainNav">
<div class="container mContainer">
<button class="navbar-toggler navbar-toggler-right" type="button" data-toggle="collapse" data-target="#navbarResponsive"
aria-controls="navbarResponsive" aria-expanded="false" aria-label="Toggle navigation">
Menu
<i class="fas fa-bars"></i>
</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto m-navbar">
<li class="nav-item">
<a class="nav-link" href="index.html" style="font-size:14px">Home</a>
</li>
<li class="nav-item">
<a class="nav-link" href="cfp.html" style="font-size:14px">CFP</a>
</li>
<li class="nav-item">
<a class="nav-link" href="people.html" style="font-size:14px">People</a>
</li>
<li class="nav-item">
<a class="nav-link" href="challenge.html" style="font-size:14px">Challenge</a>
</li>
<!--
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" style="font-size:14px" role="button" data-toggle="dropdown"
aria-haspopup="true" aria-expanded="false">
Challenge
</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="dropdown-item" href="registration.html">Registration</a>
<a class="dropdown-item" href="dataset.html">Dataset</a>
<a class="dropdown-item" href="tasks.html">Tasks</a>
<a class="dropdown-item" href="evaluation.html">Evaluation</a>
<a class="dropdown-item" href="results.html">Results</a>
</div>
</li> -->
<li class="nav-item">
<a class="nav-link" href="ImportantDate.html" style="font-size:14px"> Dates </a>
</li>
<li class="nav-item">
<a class="nav-link" href="program.html" style="font-size:14px">Program</a>
</li>
<li class="nav-item">
<a class="nav-link" href="sponsors.html" style="font-size:14px">Sponsors</a>
</li>
<li class="nav-item">
<a class="nav-link" href="contact.html" style="font-size:14px">Contact</a>
</li>
</ul>
</div>
</div>
</nav>
<!-- Page Header -->
<header class="masthead m-height" style="background-image: url('images/bgGIF.gif');">
<div class="overlay" style="background-color: #212529;opacity: 0.85"></div>
<div class="container">
<div class="row">
<div class="col-lg-8 col-md-10 mx-auto">
<div class="site-heading m-head">
<h2 style="text-align:center; margin-top:60px; font-weight: bold;">
The 1st Workshop on
</h2>
<h1 style="text-align:center; font-weight: bold; color:#FF9900">
Detecting Objects in Aerial Images
</h1>
<!-- <h2>Detecting Objects in Aerial Images (DOAI)</h2> -->
<h2 style="text-align:center; font-weight: bold; font-style: italic">
in conjunction with IEEE CVPR 2019</span>
<span class="subheading" style="text-align:center; font-weight:bold; font-style: italic">
June 16, 2019, Long Beach, California.
</h2>
</div>
</div>
</div>
</div>
</header>
<!-- Main Content -->
<div class="container">
<div class="row" style="text-align:justify;">
<div class="col-lg-10 col-md-10 mx-auto">
<h2 style="text-align:justify;margin-bottom:10px; margin-top:20px;">
Description
</h2>
<p style="margin:0px;padding:10px">
Object detection in Earth Vision, also known as Earth Observation and Remote Sensing, refers to the problem of localizing
objects of interest (e.g., vehicles, airplanes and buildings) on the earth’s surface and predicting their
corresponding categories. Observing plenty of instances from the overhead view provide a new way to understand
the world. This is a relatively new field, with many new applications waiting to be developed. For movable
categories, such as vehicles, ships, and planes, the orientation estimation is important for tracking.
The majority of computer vision research focuses mostly on images from everyday life. However, the aerial
imagery is a rich and structured source of information, yet, it is less investigated than it should be
deserved. The task of object detection in aerial images is distinguished from the conventional object
detection task in the following respects:
<!-- </p>
<p> -->
<ul style="margin-top:0px;padding-top:0px;padding-bottom:0px;">
<li style="margin-top:0px; padding-top:0px;">
The scale variations of object instances in aerial images are considerably huge.
</li>
<li>
Many small object instances are densely distributed in aerial images, for example, the ships in a harbor and the vehicles
in a parking lot.
</li>
<li>
Objects in aerial images often appear in arbitrary orientations.
</li>
</ul>
This workshop organizing on
<a href="http://cvpr2019.thecvf.com/">CVPR'2019</a>, aims to draw attention from a wide range of communities and calls for more future research
and efforts on the problems of object detection in aerial images. The workshop also contains a challenging
on object detection in aerial images that features a new large-scale annotated image database of objects
in aerial images, updated from DOTA-v1.0.
</p>
<!-- <p>
Through the dataset and the tasks, we aim to draw attention from the a wide range of communities and call for more future
research and efforts on the problems of object dection in aerial images.
</p> -->
<h2>
Topics
</h2>
<p style="margin:0px;padding:10px">
Topics of interests include, but are not limited to, following fields
<!-- -->
<ul style="margin-top:0px;padding-top:0px">
<li style="margin-top:0px; padding-top:0px">
Object detection algorithms for optical (including multispectral and hyperspectral) remote sensing images
</li>
<li>
Object detection algorithms for synthetic aperture radar (SAR) images
</li>
<li>
Object detection algorithms and implementations for UAV platforms
</li>
<li>
Deep learning models for object detection in aerial images
</li>
<!-- <li>
Practical applications of object detection in aerial images
</li> -->
<li>
Feature extraction for object detection in remote sensing images
</li>
<li>
Benchmarks of object detection in remote sensing images
</li>
<li>
Reviews and perspectives of object detection in remote sensing images
</li>
<li>
Applications and systems of object detection in remote sensing images
</li>
<li>
Object detection in Lidar point clouds
</li>
</ul>
</p>
<h2>
Submissions
</h2>
<p>
Papers will be limited up to 8 pages, including figures and tables, according to the CVPR format (main conference authors’
guidelines). One can download the templates at
<a href="http://cvpr2019.thecvf.com/files/cvpr2019AuthorKit.tgz">LaTex/Word Templates(tar)</a>
or
<a href="http://cvpr2019.thecvf.com/files/cvpr2019AuthorKit.zip">LaTex/Word Templates(zip)</a>. Papers will be reviewed by at least two reviewers with double blind policy.
Papers will be selected based on their significance and novelty of results, technical merit, and clarity
of presentation. Accepted papers will be published in CVPR 2019 proceedings and presented as posters
in the workshop. Several papers will be selected as oral representation on the workshop. All the papers
should be submitted through
<a href="https://cmt3.research.microsoft.com/DOAI2019">CMT website</a>.
</p>
</div>
</div>
</div>
<hr>
<footer>
<div class="container">
<div class="row">
<div class="col-lg-8 col-md-10 mx-auto">
<ul class="list-inline text-center">
<li class="list-inline-item">
<a href="https://twitter.com/home?status=https%3A//captain-whu.github.io/DOAI2019">
<span class="fa-stack fa-lg">
<i class="fas fa-circle fa-stack-2x"></i>
<i class="fab fa-twitter fa-stack-1x fa-inverse"></i>
</span>
</a>
</li>
<li class="list-inline-item">
<a href="https://www.facebook.com/sharer/sharer.php?u=https%3A//captain-whu.github.io/DOAI2019">
<span class="fa-stack fa-lg">
<i class="fas fa-circle fa-stack-2x"></i>
<i class="fab fa-facebook-f fa-stack-1x fa-inverse"></i>
</span>
</a>
</li>
<!-- <li class="list-inline-item">
<a href="#">
<span class="fa-stack fa-lg">
<i class="fas fa-circle fa-stack-2x"></i>
<i class="fab fa-github fa-stack-1x fa-inverse"></i>
</span>
</a>
</li> -->
</ul>
<p class="copyright text-muted">Copyright ©
<a href="http://captain.whu.edu.cn/">CAPTAIN</a>
</p>
</div>
</div>
</div>
</footer>
<!-- Bootstrap core JavaScript -->
<script src="vendor/jquery/jquery.min.js"></script>
<script src="vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<!-- Custom scripts for this template -->
<script src="js/clean-blog.min.js"></script>
</body>
</html>