-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbuild_pointcloud.py
178 lines (142 loc) · 6.87 KB
/
build_pointcloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#
# This file is part of wganvo.
# This file is based on a file from https://github.com/ori-mrg/robotcar-dataset-sdk
# (see original license below)
#
# Modifications copyright (C) 2019 Javier Cremona (CIFASIS-CONICET)
# For more information see <https://github.com/CIFASIS/wganvo>
#
# This file is licensed under the Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
#
################################################################################
#
# Copyright (c) 2017 University of Oxford
# Authors:
# Geoff Pascoe ([email protected])
#
# This work is licensed under the Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
#
################################################################################
import os
import re
import numpy as np
from transform import build_se3_transform
from interpolate_poses import interpolate_vo_poses, interpolate_ins_poses
def build_pointcloud(lidar_dir, poses_file, extrinsics_dir, start_time, end_time, origin_time=-1):
"""Builds a pointcloud by combining multiple LIDAR scans with odometry information.
Args:
lidar_dir (str): Directory containing LIDAR scans.
poses_file (str): Path to a file containing pose information. Can be VO or INS data.
extrinsics_dir (str): Directory containing extrinsic calibrations.
start_time (int): UNIX timestamp of the start of the window over which to build the pointcloud.
end_time (int): UNIX timestamp of the end of the window over which to build the pointcloud.
origin_time (int): UNIX timestamp of origin frame. Pointcloud coordinates are relative to this frame.
Returns:
numpy.ndarray: 3xn array of (x, y, z) coordinates of pointcloud
numpy.array: array of n reflectance values or None if no reflectance values are recorded (LDMRS)
Raises:
ValueError: if specified window doesn't contain any laser scans.
IOError: if scan files are not found.
"""
if origin_time < 0:
origin_time = start_time
lidar = re.search('(lms_front|lms_rear|ldmrs)', lidar_dir).group(0)
timestamps_path = os.path.join(lidar_dir, os.pardir, lidar + '.timestamps')
timestamps = []
with open(timestamps_path) as timestamps_file:
for line in timestamps_file:
timestamp = int(line.split(' ')[0])
if start_time <= timestamp <= end_time:
timestamps.append(timestamp)
if len(timestamps) == 0:
raise ValueError("No LIDAR data in the given time bracket.")
with open(os.path.join(extrinsics_dir, lidar + '.txt')) as extrinsics_file:
extrinsics = next(extrinsics_file)
G_posesource_laser = build_se3_transform([float(x) for x in extrinsics.split(' ')])
poses_type = re.search('(vo|ins)\.csv', poses_file).group(1)
if poses_type == 'ins':
with open(os.path.join(extrinsics_dir, 'ins.txt')) as extrinsics_file:
extrinsics = next(extrinsics_file)
G_posesource_laser = np.linalg.solve(build_se3_transform([float(x) for x in extrinsics.split(' ')]),
G_posesource_laser)
poses = interpolate_ins_poses(poses_file, timestamps, origin_time)
else:
# sensor is VO, which is located at the main vehicle frame
poses = interpolate_vo_poses(poses_file, timestamps, origin_time)
pointcloud = np.array([[0], [0], [0], [0]])
if lidar == 'ldmrs':
reflectance = None
else:
reflectance = np.empty((0))
for i in range(0, len(poses)):
scan_path = os.path.join(lidar_dir, str(timestamps[i]) + '.bin')
if not os.path.isfile(scan_path):
continue
scan_file = open(scan_path)
scan = np.fromfile(scan_file, np.double)
scan_file.close()
scan = scan.reshape((len(scan) // 3, 3)).transpose()
if lidar != 'ldmrs':
# LMS scans are tuples of (x, y, reflectance)
reflectance = np.concatenate((reflectance, np.ravel(scan[2, :])))
scan[2, :] = np.zeros((1, scan.shape[1]))
scan = np.dot(np.dot(poses[i], G_posesource_laser), np.vstack([scan, np.ones((1, scan.shape[1]))]))
pointcloud = np.hstack([pointcloud, scan])
pointcloud = pointcloud[:, 1:]
if pointcloud.shape[1] == 0:
raise IOError("Could not find scan files for given time range in directory " + lidar_dir)
return pointcloud, reflectance
if __name__ == "__main__":
import argparse
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
parser = argparse.ArgumentParser(description='Build and display a pointcloud')
parser.add_argument('--poses_file', type=str, default=None, help='File containing relative or absolute poses')
parser.add_argument('--extrinsics_dir', type=str, default=None,
help='Directory containing extrinsic calibrations')
parser.add_argument('--laser_dir', type=str, default=None, help='Directory containing LIDAR data')
args = parser.parse_args()
lidar = re.search('(lms_front|lms_rear|ldmrs)', args.laser_dir).group(0)
timestamps_path = os.path.join(args.laser_dir, os.pardir, lidar + '.timestamps')
with open(timestamps_path) as timestamps_file:
start_time = int(next(timestamps_file).split(' ')[0])
end_time = start_time + 2e7
pointcloud, reflectance = build_pointcloud(args.laser_dir, args.poses_file,
args.extrinsics_dir, start_time, end_time)
if reflectance is not None:
colours = (reflectance - reflectance.min()) / (reflectance.max() - reflectance.min())
colours = 1 / (1 + np.exp(-10 * (colours - colours.mean())))
else:
colours = 'gray'
x = np.ravel(pointcloud[0, :])
y = np.ravel(pointcloud[1, :])
z = np.ravel(pointcloud[2, :])
xmin = x.min()
ymin = y.min()
zmin = z.min()
xmax = x.max()
ymax = y.max()
zmax = z.max()
xmid = (xmax + xmin) * 0.5
ymid = (ymax + ymin) * 0.5
zmid = (zmax + zmin) * 0.5
max_range = max(xmax - xmin, ymax - ymin, zmax - zmin)
x_range = [xmid - 0.5 * max_range, xmid + 0.5 * max_range]
y_range = [ymid - 0.5 * max_range, ymid + 0.5 * max_range]
z_range = [zmid - 0.5 * max_range, zmid + 0.5 * max_range]
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')
ax.scatter(-y, -x, -z, marker=',', s=1, c=colours, cmap='gray', edgecolors='none')
ax.set_xlim(-y_range[1], -y_range[0])
ax.set_ylim(-x_range[1], -x_range[0])
ax.set_zlim(-z_range[1], -z_range[0])
plt.show()