-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtfquaternions.py
428 lines (339 loc) · 14.7 KB
/
tfquaternions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#
# This file is part of wganvo.
# This file is part of tf-quaternion (https://github.com/PhilJd/tf-quaternion) (see original license below)
#
# Modifications copyright (C) 2019 Javier Cremona (CIFASIS-CONICET)
# For more information see <https://github.com/CIFASIS/wganvo>
#
# wganvo is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# wganvo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with wganvo. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright Philipp Jund ([email protected]) 2017. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This small library implements quaternion operations in tensorflow.
All operations are differentiable.
"""
import tensorflow as tf
# ____________________________________________________________________________
# Quaternion module functions
def scope_wrapper(func, *args, **kwargs):
"""Create a tf name scope around the function with its name."""
def scoped_func(*args, **kwargs):
with tf.name_scope("quaternion_{}".format(func.__name__)):
return func(*args, **kwargs)
return scoped_func
@scope_wrapper
def vector3d_to_quaternion(x):
"""Convert a tensor of 3D vectors to a quaternion.
Prepends a 0 to the last dimension, i.e. [[1,2,3]] -> [[0,1,2,3]].
Args:
x: A `tf.Tensor` of rank R, the last dimension must be 3.
Returns:
A `Quaternion` of Rank R with the last dimension being 4.
Raises:
ValueError, if the last dimension of x is not 3.
"""
x = tf.convert_to_tensor(x)
if x.shape[-1] != 3:
raise ValueError("The last dimension of x must be 3.")
Quaternion.validate_type(x)
return Quaternion(tf.pad(x, (len(x.shape) - 1) * [[0, 0]] + [[1, 0]]))
@scope_wrapper
def quaternion_to_vector3d(q):
"""Remove the w component(s) of quaternion(s) q."""
return q.value()[..., 1:]
@scope_wrapper
def _prepare_tensor_for_div_mul(x):
"""Prepare the tensor x for division/multiplication.
This function
a) converts x to a tensor if necessary,
b) prepends a 0 in the last dimension if the last dimension is 3,
c) validates the type and shape.
"""
x = tf.convert_to_tensor(x)
if x.shape[-1] == 3:
x = vector3d_to_quaternion(x)
Quaternion.validate_shape(x)
Quaternion.validate_type(x)
return x
@scope_wrapper
def quaternion_multiply(a, b):
"""Multiply two quaternion tensors.
Note that this differs from tf.multiply and is not commutative.
Args:
a, b: A `tf.Tensor` with shape (..., 4).
Returns:
A `Quaternion`.
"""
a = _prepare_tensor_for_div_mul(a)
b = _prepare_tensor_for_div_mul(b)
w1, x1, y1, z1 = tf.unstack(a, axis=-1, num=4)
w2, x2, y2, z2 = tf.unstack(b, axis=-1, num=4)
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return Quaternion(tf.squeeze(tf.stack((w, x, y, z), axis=-1)))
@scope_wrapper
def quaternion_divide(a, b):
"""Divide tensor `a` by quaternion tensor `b`. `a` may be a scalar value.
Args:
a: A scalar or `tf.Tensor` with shape (..., 4).
b: A `tf.Tensor` with shape (..., 4).
Returns:
A `Quaternion`.
"""
a = tf.convert_to_tensor(a)
if a.shape == () or a.shape[-1] == 1: # scalar
return Quaternion(tf.multiply(a, b.conj()) / Quaternion(b).norm())
bnorm = tf.squeeze(Quaternion(b).norm())
w1, x1, y1, z1 = tf.unstack(a, axis=-1, num=4)
w2, x2, y2, z2 = tf.unstack(b, axis=-1, num=4)
w = (w1 * w2 + x1 * x2 + y1 * y2 + z1 * z2) / bnorm
x = (-w1 * x2 + x1 * w2 - y1 * z2 + z1 * y2) / bnorm
y = (-w1 * y2 + x1 * z2 + y1 * w2 - z1 * x2) / bnorm
z = (-w1 * z2 - x1 * y2 + y1 * x2 + z1 * w2) / bnorm
return Quaternion(tf.squeeze(tf.stack((w, x, y, z), axis=-1)))
@scope_wrapper
def quaternion_conjugate(q):
"""Compute the conjugate of q, i.e. [q.w, -q.x, -q.y, -q.z]."""
return Quaternion(tf.multiply(q, [1.0, -1.0, -1.0, -1.0]))
@scope_wrapper
def rotate_vector_by_quaternion(q, v, q_ndims=None, v_ndims=None):
"""Rotate a vector (or tensor with last dimension of 3) by q.
This function computes v' = q * v * conjugate(q) but faster.
Fast version can be found here:
https://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
Args:
q: A `Quaternion` or `tf.Tensor` with shape (..., 4)
v: A `tf.Tensor` with shape (..., 3)
q_ndims: The number of dimensions of q. Only necessary to specify if
the shape of q is unknown.
v_ndims: The number of dimensions of v. Only necessary to specify if
the shape of v is unknown.
Returns: A `tf.Tensor` with the broadcasted shape of v and q.
"""
v = tf.convert_to_tensor(v)
q = q.normalized()
w = q.value()[..., 0]
q_xyz = q.value()[..., 1:]
# Broadcast shapes. Todo(phil): Prepare a pull request which adds
# broadcasting support to tf.cross
if q_xyz.shape.ndims is not None:
q_ndims = q_xyz.shape.ndims
if v.shape.ndims is not None:
v_ndims = v.shape.ndims
for _ in range(v_ndims - q_ndims):
q_xyz = tf.expand_dims(q_xyz, axis=0)
for _ in range(q_ndims - v_ndims):
v = tf.expand_dims(v, axis=0) + tf.zeros_like(q_xyz)
q_xyz += tf.zeros_like(v)
v += tf.zeros_like(q_xyz)
t = 2 * tf.cross(q_xyz, v)
return v + tf.expand_dims(w, axis=-1) * t + tf.cross(q_xyz, t)
# ____________________________________________________________________________
# The quaternion class
class Quaternion(object):
"""A multidimensional quaternion. The API resembles that of tf.Variable."""
# When trying to scale the components of the Quaternion individually
# by right-multiplying a tf.Quaternion with a 4-dimensional np.array a, the
# default numpy behaviour is to call `Quaternion.__rmul__(i)` for each
# element i in a, resulting in 4 tfq.Quaternions instead of one.
# Setting __array_priority__ = 1000 fixes this. (For further reference see
# https://stackoverflow.com/questions/40694380/forcing-multiplication-to-use-rmul-instead-of-numpy-array-mul-or-byp)
__array_priority__ = 1000
def __init__(self, wxyz=(1, 0, 0, 0), dtype=tf.float32, name=None):
"""The quaternion constructor.
Args:
wxyz: The values for w, x, y, z, a `tf.Tensor` with shape (..., 4).
Note that quaternions only support floating point numbers.
Defaults to (1.0, 0.0, 0.0, 0.0)
dtype: The type used for the quaternion, must be a floating point
number, i.e. one of tf.float16, tf.float32, tf.float64.
name: An optional name for the tensor.
Returns:
A Quaternion.
Raises:
ValueError, if wxyz is a `tf.Tensor` and the tensors dtype differs
from the given dtype.
ValueError, if the last dimension of wxyz is not 4.
TypeError, if dtype is not a float.
"""
self._q = tf.convert_to_tensor(wxyz, dtype=dtype, name=name)
self.name = name if name else ""
self.validate_type(self._q)
self.validate_shape(self._q) # check that shape is (..., 4)
def value(self):
"""The `Tensor` which holds the value of the quaternion.
Note that this does not return a reference, so you can not alter the
quaternion through this.
"""
return self._q
def eval(self, session=None):
"""In a session, computes and returns the value of this quaternion."""
return self._q.eval(session=session)
def _ref(self):
return self._q._ref()
@property
def dtype(self):
"""The `DType` of this quaternion."""
return self._q.dtype
@property
def op(self):
"""The `Operation` of this quaternion."""
return self._q.op
@property
def graph(self):
"""The `Graph` of this quaternion."""
return self._q.graph
@property
def shape(self):
"""The `TensorShape` of the variable. Is always [..., 4].
Returns:
A `TensorShape`.
"""
return self._q.get_shape()
def get_shape(self):
"""An Alias of Quaternion.shape."""
return self.shape
def _as_graph_element(self):
"""Conversion function for Graph.as_graph_element()."""
return self._q
def __add__(self, other):
return Quaternion(tf.add(self._q, tf.convert_to_tensor(other)))
def __radd__(self, other):
return Quaternion(tf.add(tf.convert_to_tensor(other), self._q))
def __sub__(self, other):
return Quaternion(tf.subtract(self._q, tf.convert_to_tensor(other)))
def __rsub__(self, other):
return Quaternion(tf.subtract(tf.convert_to_tensor(other), self._q))
def __mul__(self, other):
if isinstance(other, Quaternion):
return quaternion_multiply(self, other)
return Quaternion(tf.multiply(self._q, tf.convert_to_tensor(other)))
def __rmul__(self, other):
# This is only called when __mul__ fails, so 'other' can not
# be a Quaternion.
return Quaternion(tf.multiply(self._q, tf.convert_to_tensor(other)))
def __div__(self, other):
if isinstance(other, Quaternion):
return quaternion_divide(self, other)
return tf.divide(self._q, tf.convert_to_tensor(other))
def __rdiv__(self, other):
if (isinstance(other, Quaternion) or
tf.convert_to_tensor(other).shape == () or
tf.convert_to_tensor(other).shape[-1] == 1): # scalar
return quaternion_divide(other, self)
return tf.divide(tf.convert_to_tensor(other), self._q)
def __truediv__(self, other):
return self.__div__(other)
def __rtruediv__(self, other):
return self.__rdiv__(other)
def __neg__(self):
return Quaternion(-1 * self._q)
# rich comparisons
def __lt__(self, other): # <
return tf.less(self._q, other)
def __le__(self, other): # <=
return tf.less_equal(self._q, other)
def __eq__(self, other): # ==
return tf.equal(self._q, other)
def __ne__(self, other): # !=
return tf.not_equal(self._q, other)
def __gt__(self, other): # >
return tf.greater(self._q, other)
def __ge__(self, other): # >=
return tf.greater_equal(self._q, other)
def __repr__(self):
return "<tfq.Quaternion '{}' ({})>".format(self.name,
self._q.__repr__()[1:-1])
@scope_wrapper
def conjugate(self):
"""Compute the conjugate of self.q, i.e. [w, -x, -y, -z]."""
return quaternion_conjugate(self)
def conj(self):
"""Compute the conjugate of self.q, i.e. [w, -x, -y, -z].
Alias for Quaternion.conjugate().
"""
return quaternion_conjugate(self)
@scope_wrapper
def inverse(self):
"""Compute the inverse of the quaternion, i.e. q.conjugate / q.norm."""
return Quaternion(tf.convert_to_tensor(self.conjugate()) / self.norm())
@scope_wrapper
def normalized(self):
"""Compute the normalized quaternion."""
return Quaternion(tf.divide(self._q, self.abs()))
@scope_wrapper
def as_rotation_matrix(self):
"""Calculate the corresponding rotation matrix.
See
http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/
Returns:
A `tf.Tensor` with R+1 dimensions and
shape [d_1, ..., d_(R-1), 3, 3], the rotation matrix
"""
# helper functions
def diag(a, b): # computes the diagonal entries, 1 - 2*a**2 - 2*b**2
return 1 - 2 * tf.pow(a, 2) - 2 * tf.pow(b, 2)
def tr_add(a, b, c, d): # computes triangle entries with addition
return 2 * a * b + 2 * c * d
def tr_sub(a, b, c, d): # computes triangle entries with subtraction
return 2 * a * b - 2 * c * d
w, x, y, z = tf.unstack(self.normalized().value(), axis=-1)
m = [[diag(y, z), tr_sub(x, y, z, w), tr_add(x, z, y, w)],
[tr_add(x, y, z, w), diag(x, z), tr_sub(y, z, x, w)],
[tr_sub(x, z, y, w), tr_add(y, z, x, w), diag(x, y)]]
return tf.stack([tf.stack(m[i], axis=-1) for i in range(3)], axis=-2)
@staticmethod
def validate_shape(x):
"""Raise a value error if x.shape ist not (..., 4)."""
error_msg = ("Can't create a quaternion from a tensor with shape {}."
"The last dimension must be 4.")
# Check is performed during graph construction. If your dimension
# is unknown, tf.reshape(x, (-1, 4)) might work.
if x.shape[-1] != 4:
raise ValueError(error_msg.format(x.shape))
@staticmethod
def validate_type(x):
"""Raise a type error if the dtype of x is not float."""
if not x.dtype.is_floating:
raise TypeError("Quaternion: dtype must be one of float16/32/64.")
@scope_wrapper
def norm(self, keepdims=True):
"""Return the norm of the quaternion."""
return tf.reduce_sum(tf.square(self._q), axis=-1, keepdims=keepdims)
@scope_wrapper
def abs(self, keepdims=True):
"""Return the square root of the norm of the quaternion."""
return tf.sqrt(self.norm(keepdims))
# ____________________________________________________________________________
# quaternion to tensor conversion
def quaternion_to_tensor(x, dtype=None, name=None, as_ref=None):
"""Convert a Quaternion to a `tf.Tensor`."""
# Todo(phil): handle as_ref correctly
return tf.convert_to_tensor(x.value(), dtype, name)
tf.register_tensor_conversion_function(Quaternion, quaternion_to_tensor,
priority=100)