-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcic_ids_17_dataset.py
453 lines (392 loc) · 21 KB
/
cic_ids_17_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import pandas as pd
import torch
import joblib
import numpy as np
import collections
from pathlib import Path
from torch.utils import data
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import train_test_split
import utils
def load_and_preprocess_dataset(data_folder_path, keep_benign=False):
"""
Loads and preprocesses the CIC-IDS 2017 dataset:
- concatenates all csv files
- fixes column names
- resets the index (i.e, from 1 to n_rows)
- handles missing values in `Flow Bytes/s`
- drops ["Flow ID", "Source IP", "Destination IP", "Protocol", "Timestamp"]
Args:
data_folder_path: String. Folder path where .csv files reside.
keep_benign: Bool.
Returns: pandas.DataFrame
"""
# load dataset
p = Path(data_folder_path).glob('**/*')
files = sorted([x for x in p if x.is_file()])
dfs = []
for file in files:
if file.name == "Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv":
# there are 288602 empty rows at the end of
# Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv
# do not read those
dfs.append(pd.read_csv(file, encoding="ISO-8859-1", nrows=170366))
else:
dfs.append(pd.read_csv(file, encoding="ISO-8859-1"))
df = pd.concat(dfs, axis=0)
# preprocess
df.columns = [col.strip() for col in df.columns]
df["Flow Bytes/s"] = df["Flow Bytes/s"].fillna(value=0.0)
# remove benign flows
# LabelEncoder orders the labels alphabetically
# to have BENIGN as the very last label, add 'z' in the front
df.Label = df.Label.replace({"BENIGN": "zBENIGN"})
if not keep_benign:
df = df[df.Label != "zBENIGN"]
drop_cols = ["Flow ID", "Source IP", "Destination IP", "Protocol", "Timestamp"]
df = df.drop(drop_cols, axis=1)
df.reset_index(drop=True, inplace=True)
return df
def get_linear_vector(df, df_means, label, feature, steps=3):
"""
Get linear interval for a given feature of a given class (with n intervals).
Args:
df: pd.DataFrame. Complete Dataframe.
df_means: pd.DataFrame. Same dataframe but grouped by "Label" column and averaged per feature.
label: Str. Label column.
feature: Str. Feature column.
steps: Int. Defines how big the interval will be. (Currently only steps=3 is supported though.)
"""
_max = df[feature].max()
_min = df[feature].min()
interval = (_max - _min) / steps
t1, t2 = _min + interval, _max - interval
rep = [int(df_means[feature][label] < t1),
int(t1 < df_means[feature][label] < t2),
int(df_means[feature][label] > t2)]
return np.argmax(rep), rep
def get_percentile_vector(df, df_means, label, feature):
"""
Get percentile interval for a given feature of a given class feature (33%-median and 66%).
Args:
df: pd.DataFrame. Complete Dataframe.
df_means: pd.DataFrame. Same dataframe but grouped by "Label" column and averaged per feature.
label: Str. Label column.
feature: Str. Feature column.
"""
t1, t2 = df[feature].quantile(0.33), df[feature].quantile(0.66)
rep = [int(df_means[feature][label] < t1),
int(t1 < df_means[feature][label] < t2),
int(df_means[feature][label] > t2)]
return np.argmax(rep), rep
def compute_static_condition_vectors(df, df_means, relevant_features, vector_type="percentile"):
"""
Constructs the condition vector per attack type.
Args:
df: pd.DataFrame. Complete Dataframe.
df_means: pd.DataFrame. Same dataframe but grouped by "Label" column and averaged per feature.
relevant_features: List. Features to use.
vector_type: Str. Indicates what method to use to compute condition vector.
Returns: representation, levels
"""
df_mean_condition = df_means[relevant_features]
representations, levels = collections.defaultdict(list), collections.defaultdict(list)
for attack in df_mean_condition.index:
for feature in relevant_features:
if feature in ['PSH Flag Count', 'SYN Flag Count', 'RST Flag Count', 'ACK Flag Count']:
val = int(df_mean_condition[feature][attack])
representations[attack].append([val])
levels[attack].append(val)
elif feature == 'Destination Port':
port_num = int(df_mean_condition[feature][attack])
port_bin = utils.convert_port_to_binary(port_num)
representations[attack].append(port_bin)
levels[attack].append(port_num)
else:
if vector_type == "percentile":
level, representation = get_percentile_vector(df, df_mean_condition, attack, feature)
elif vector_type == "linear":
level, representation = get_linear_vector(df, df_mean_condition, attack, feature)
else:
raise ValueError("Supported vector types are ['percentile', 'linear']")
representations[attack].append(representation)
levels[attack].append(level)
# flatten representation
representations[attack] = [val for rep in representations[attack] for val in rep]
return representations, levels
def compute_dynamic_condition_vectors(df, relevant_features, quantiles=(0.33, 0.66)):
"""
Computes the condition vectors/levels for each flow individually.
Args:
df: pd.DataFrame. The complete (or train/test slice) dataset.
relevant_features: List. Features to use.
quantiles: Tuple. Contains the values for first and second quantile. By default 33 and 66the percentile,
such that it is split into 3 equi-sized buckets.
Returns: np.array, np.array. The condition vectors, the condition levels
"""
flag_cols = [col for col in relevant_features if "Flag" in col]
port_col = "Destination Port"
cols_to_dummy = [col for col in relevant_features if col not in flag_cols and col != port_col]
df_condition = df[relevant_features]
# compute bucket for each feature based on quantile values
quantiles = [0, *quantiles, 1.0]
df_condition.loc[:, cols_to_dummy] = df_condition.loc[:, cols_to_dummy].apply(
lambda x: pd.qcut(x, q=quantiles, labels=False)
)
df_levels = df_condition
# turn bucket values in one-hot encoded features (except for port and flag columns)
df_condition = pd.get_dummies(df_condition, columns=cols_to_dummy)
# reorder cols (.get_dummies() appends to the end)
reorder_cols = [col for col in df_condition.columns if col not in flag_cols] + flag_cols
df_condition = df_condition[reorder_cols]
# handle "Destination Port"
# covert port to 16 bit array and add to df
df_condition[port_col] = df_condition[port_col].apply(utils.convert_port_to_binary)
# make new port df to separate arrays into columns
df_port = pd.DataFrame(df_condition[port_col].tolist(),
columns=[port_col + f"_{i}" for i in range(16)],
index=df_condition.index)
# concatenate dfs
df_condition = pd.concat([df_port, df_condition.drop(port_col, axis=1)], axis=1)
return df_condition.values, df_levels.values
def compute_dynamic_condition_vector_dict(condition_vectors, labels, max_per_class=10000, num_labels=14):
"""
Constructs a dictionary that contains class-condition_vector/level key-value pairs.
For each class we select max_per_class condition vectors.
If there are more than max_per_class condition vectors/levels,
max_per_class vectors are drawn at random from the population. If there are less of them are selected.
Args:
condition_vectors: np.array. Either condition vectors or levels.
labels: np.array.
max_per_class: Int.
num_labels: Int.
Returns: Dict
"""
condition_vector_dict = {}
for label in range(num_labels):
idx = np.where(labels == label)[0]
if len(idx) > max_per_class:
idx = np.random.choice(idx, max_per_class)
else:
idx = idx[:max_per_class]
condition_vector_dict[label] = condition_vectors[idx]
return condition_vector_dict
def generate_train_test_split(data_folder_path, write_path="./data/cic-ids-2017_splits",
test_size=0.05, seed=0, stratify=False, scale=False, keep_benign=False,
write_class_means=False, write_static_condition_vectors=False,
write_dynamic_condition_vectors=False):
"""
Generate a train-test-split of the CIC-IDS dataset:
- loads and preprocess dataset
- encodes the `Label` col
- removes rows with `inf` values in `Flow Bytes/s` and `Flow Packets/s`
- scales the numeric columns in the dataframe using MinMaxScaler
- split df into train and test set given `test_size` and `seed`.
- saves the generate split + class array to `write_path`
- (optionally) keeps benign flows
- (optionally) saves the class means
- (optionally) saves the static condition vectors
- (optionally) saves the dynamic condition vectors.
Args:
data_folder_path: String. Folder path where .csv files reside.
write_path: String. Folder path to save files to.
test_size: Float. Proportion of test samples
seed: Int. For reproducibility.
stratify: Bool. Whether to preserve the original distribution of labels in train/test.
scale: Bool. Whether to scale numeric columns.
keep_benign: Bool.
write_class_means: Bool.
write_static_condition_vectors: Bool. Only executed if write_class_means is True and scale is False.
This saves a dictionary containing for each class a static vector representation constructed from
a selection of features in the dataset. For each selected feature, we compute if the value lies in
the low/mid/high quantile. The result is a 3-dim vector per features. We encode 11 features this way,
and also add the port, resulting in a 34-dim vector per class.
write_dynamic_condition_vectors: Bool.
"""
labels = utils.get_label_names()
condition_vector_features = utils.get_condition_vector_names()
write_path = Path(write_path) / f"seed_{seed}"
if not write_path.exists():
write_path.mkdir(parents=True, exist_ok=True)
print("Loading and preprocessing data...")
df = load_and_preprocess_dataset(data_folder_path, keep_benign=keep_benign)
# encode target col
label_encoder = LabelEncoder()
label_encoder.fit(labels)
df.Label = label_encoder.transform(df.Label)
# scale columns
df = df[np.isfinite(df).all(1)]
X = df.drop("Label", axis=1).values
y = df.Label.values
if scale:
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
joblib.dump(scaler, write_path / 'min_max_scaler.gz')
# split train_test
print("Generating split...")
X_train, X_test, y_train, y_test = train_test_split(
X, y,
test_size=test_size,
stratify=y if stratify else None,
random_state=seed
)
print(f"Saving split to {write_path}...")
suffix = "_scaled" if scale else ""
torch.save({"features": X_train, "labels": y_train}, write_path / f"train_dataset{suffix}.pt")
torch.save({"features": X_test, "labels": y_test}, write_path / f"test_dataset{suffix}.pt")
# save labels and scaler to inverse-transform data
joblib.dump(label_encoder, write_path / 'label_encoder.gz')
torch.save(label_encoder.classes_, write_path / "class_names.pt")
torch.save(df.columns, write_path / "column_names.pt")
if write_class_means:
df_reconstruct = pd.DataFrame(np.append(X, y.reshape(-1, 1), axis=1), columns=df.columns)
df_mean = df_reconstruct.groupby("Label").mean()
torch.save(df_mean, write_path / f"class_means{suffix}.pt")
if write_static_condition_vectors:
assert not scale
representations, levels = compute_static_condition_vectors(df_reconstruct, df_mean,
condition_vector_features)
torch.save(representations, write_path / f"static_condition_vectors.pt")
torch.save(levels, write_path / f"static_condition_levels.pt")
torch.save(condition_vector_features, write_path / f"condition_vector_names.pt")
if write_dynamic_condition_vectors:
assert not scale
df_train_reconstruct = pd.DataFrame(np.append(X_train, y_train.reshape(-1, 1), axis=1), columns=df.columns)
df_test_reconstruct = pd.DataFrame(np.append(X_test, y_test.reshape(-1, 1), axis=1), columns=df.columns)
train_dynamic_condition_vectors, train_dynamic_condition_levels = compute_dynamic_condition_vectors(
df_train_reconstruct,
condition_vector_features,
)
test_dynamic_condition_vectors, _ = compute_dynamic_condition_vectors(
df_test_reconstruct,
condition_vector_features,
)
# we also want to construct the dynamic_condition_vector_dict --> e.g. 5000 condition vectors per class.
# y_train should be in the same order as train_dynamic_condition_vectors still
dynamic_condition_vector_dict = compute_dynamic_condition_vector_dict(train_dynamic_condition_vectors,
df_train_reconstruct.Label)
dynamic_condition_level_dict = compute_dynamic_condition_vector_dict(train_dynamic_condition_levels,
df_train_reconstruct.Label)
torch.save(train_dynamic_condition_vectors, write_path / f"train_dynamic_condition_vectors.pt")
torch.save(test_dynamic_condition_vectors, write_path / f"test_dynamic_condition_vectors.pt")
torch.save(dynamic_condition_vector_dict, write_path / f"dynamic_condition_vector_dict.pt")
torch.save(dynamic_condition_level_dict, write_path / f"dynamic_condition_level_dict.pt")
class CIC17Dataset(data.Dataset):
def __init__(self, file_path, is_scaled=False,
use_static_condition_vectors=False,
use_dynamic_condition_vectors=False,
is_test=False):
assert not (use_static_condition_vectors and use_dynamic_condition_vectors)
folder_path = Path(file_path).parent
dataset = torch.load(file_path)
self.X = dataset["features"]
self.y = dataset["labels"]
self.column_names = torch.load(folder_path / "column_names.pt")
self.class_names = torch.load(folder_path / "class_names.pt")
self.label_encoder = joblib.load(folder_path / "label_encoder.gz")
self.static_condition_vectors = torch.load(folder_path / "static_condition_vectors.pt")
self.static_condition_levels = torch.load(folder_path / "static_condition_levels.pt")
self.condition_vector_names = torch.load(folder_path / "condition_vector_names.pt")
self.dynamic_condition_vectors = torch.load(
folder_path / f"{'test' if is_test else 'train'}_dynamic_condition_vectors.pt"
)
self.dynamic_condition_vector_dict = torch.load(folder_path / "dynamic_condition_vector_dict.pt")
self.dynamic_condition_level_dict = torch.load(folder_path / "dynamic_condition_level_dict.pt")
self.use_static_condition_vectors = use_static_condition_vectors
self.use_dynamic_condition_vectors = use_dynamic_condition_vectors
if is_scaled:
self.scaler = joblib.load(folder_path / "min_max_scaler.gz")
self.class_means = torch.load(folder_path / "class_means_scaled.pt")
else:
self.class_means = torch.load(folder_path / "class_means.pt")
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
label = self.y[idx]
# torch.Dataset cannot handle 'None' values, hence just empty list
condition_vector = []
if self.use_static_condition_vectors:
condition_vector = torch.Tensor(self.static_condition_vectors[label])
elif self.use_dynamic_condition_vectors:
condition_vector = self.dynamic_condition_vectors[idx]
return [self.X[idx], label, condition_vector]
if __name__ == '__main__':
# --------------------------------- Data generation ---------------------------------
# unscaled dataset
generate_train_test_split("./data/cic-ids-2017/TrafficLabelling",
stratify=True, scale=False, write_class_means=True,
write_static_condition_vectors=True, write_dynamic_condition_vectors=True)
# scaled dataset
generate_train_test_split("./data/cic-ids-2017/TrafficLabelling",
stratify=True, scale=True, write_class_means=True)
# only required for training the classifier
generate_train_test_split("./data/cic-ids-2017/TrafficLabelling",
write_path="./data/cic-ids-2017_splits_with_benign",
stratify=True, scale=False, keep_benign=True, write_class_means=True)
# --------------------------------- Sanity checks ----------------------------------
# train_dataset = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/train_dataset_scaled.pt", is_scaled=True)
# test_dataset = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/test_dataset_scaled.pt", is_scaled=True)
#
# # 1. Label distribution checks
# print(len(train_dataset)) # 528728
# print(len(test_dataset)) # 27828
# train_label_counts = collections.Counter(train_dataset.y)
# test_label_counts = collections.Counter(test_dataset.y)
# print({label: round(count / len(train_dataset), 5) for label, count in train_label_counts.most_common()})
# print({label: round(count / len(test_dataset), 5) for label, count in test_label_counts.most_common()})
# # {3: 0.41348, 9: 0.28533, 1: 0.23003, 2: 0.01849, 6: 0.01426, 10: 0.0106, 5: 0.01041, 4: 0.00988, 0: 0.00351,
# # 11: 0.00271, 13: 0.00117, 8: 6e-05, 12: 4e-05, 7: 2e-05}
# # {3: 0.41347, 9: 0.28532, 1: 0.23002, 2: 0.01851, 6: 0.01427, 10: 0.0106, 5: 0.01042, 4: 0.00988, 0: 0.00352,
# # 11: 0.0027, 13: 0.00119, 8: 7e-05, 12: 4e-05}
#
# # 2. PyTorch data loaders check
# train_loader = data.DataLoader(train_dataset, batch_size=128)
# test_loader = data.DataLoader(test_dataset, batch_size=128)
# batch = next(iter(train_loader))
# print(batch[0].shape, batch[1].shape)
#
# # 3. Inverse transform labels checks
# class_names = train_dataset.class_names
# label_encoder = train_dataset.label_encoder
# print("\nClasses: ", class_names)
# print("Transformed labels: ", *zip(train_dataset.y[:10],
# label_encoder.inverse_transform(train_dataset.y[:10])))
#
# # 4. inverse transform scaling checks
# scaler = train_dataset.scaler
# train_dataset_unscaled = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/train_dataset.pt")
# X_unscaled = scaler.inverse_transform(train_dataset.X)
# print("\nInverse scaled X: ", X_unscaled[0][:10])
# print("Original unscaled X: ", train_dataset_unscaled.X[0][:10])
# print("Equal: ", np.array_equal(X_unscaled, train_dataset_unscaled.X))
# # tiny numeric differences are expected
# print("All close: ", np.allclose(X_unscaled, train_dataset_unscaled.X))
#
# # 5. validate static condition vectors
# train_dataset = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/train_dataset_scaled.pt", is_scaled=True,
# use_static_condition_vectors=True)
#
# print(train_dataset.class_names, train_dataset.condition_vector_names)
# print(train_dataset.static_condition_vectors, train_dataset.static_condition_levels)
# levels = collections.defaultdict(list)
# for label, level in train_dataset.static_condition_levels.items():
# levels[tuple(level)].append(label)
# print("Duplicates:", not len(levels) == len(train_dataset.static_condition_levels))
# # 'DoS GoldenEye' 'DoS Hulk' have duplicate representations, unfortunately.
# print(levels)
#
# # 6. validate dynamic condition vectors
# train_dataset = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/train_dataset_scaled.pt", is_scaled=True,
# use_dynamic_condition_vectors=True)
# test_dataset = CIC17Dataset("./data/cic-ids-2017_splits/seed_0/test_dataset_scaled.pt", is_scaled=True,
# use_dynamic_condition_vectors=True, is_test=True)
# print(train_dataset.dynamic_condition_vectors)
# print(test_dataset.dynamic_condition_vectors)
# # dynamic condition vector dict
# print(train_dataset.dynamic_condition_vector_dict)
# for label, vectors in train_dataset.dynamic_condition_vector_dict.items():
# print(label, vectors.shape)
# # dynamic condition vector levels
# print(train_dataset.dynamic_condition_leve_dict)
# for label, vectors in train_dataset.dynamic_condition_level_dict.items():
# print(label, vectors.shape)