-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlosses.py
489 lines (408 loc) · 19.5 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# from __future__ import print_function
import torch
import random
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torch.autograd import Variable
from torch_utils import assert_no_grad
def binary_cross_entropy_cls(predictions: torch.Tensor, labels: torch.Tensor):
"""
https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
Parameters
----------
predictions: (B, ) must be in [0, 1]
labels: (B, )
size_average
check_input
Returns
-------
"""
assert predictions.size() == labels.size()
criterion = torch.nn.BCELoss() # should I create new instance here!!!!
return criterion(predictions, labels.float())
def cross_entroy(predictions: torch.Tensor, labels: torch.tensor):
assert predictions.shape[0] == labels.shape[0]
criterion = torch.nn.CrossEntropyLoss()
return criterion(predictions, labels.long())
"""
Author: Yonglong Tian ([email protected])
Date: May 07, 2020
"""
class SupConLoss_out(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss_out, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
features = F.normalize(features, dim=-1) # normalize
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device) # mask==1, positive instance
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
cos_similarity = torch.matmul(anchor_feature, contrast_feature.T)
anchor_dot_contrast = torch.div(cos_similarity, self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
negative_mask = torch.ones_like(mask) - mask # mask==1, negative samples
# mask-out self-contrast cases: {i, i} pairs; mask==0: self feature
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)+1e-6)
# compute mean of log-likelihood over positive
n_mask = mask.sum(1)
mean_log_prob_pos = (mask * log_prob).sum(1) / torch.where(n_mask>0, n_mask, torch.tensor(1.0).cuda())
# output positive cosine similarity & negative similarity
prefix = "Synthesis Level" if batch_size <= 32 else "Doc Level"
# print("%s | Average Positive Cosine Similariy: %.5f, Average Negative Cosine Similariy: %.5f" % (prefix, (cos_similarity * mask).sum()/mask.sum(),
# ( cos_similarity * negative_mask).sum()/negative_mask.sum() ))
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
# loss = loss.view(anchor_count, batch_size).mean()
loss = (loss * (n_mask > 0)).sum() / (n_mask>0).sum()
return loss
def forward2(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
features = F.normalize(features, dim=-1) # normalize
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
mask2 = torch.eye(batch_size, dtype=torch.float32).to(device) # only take augmented instance as positive instance
else:
mask = mask.float().to(device) # mask==1, positive instance
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
mask2 = mask2.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases: {i, i} pairs; mask==0: self feature
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
mask2 = mask2 * logits_mask
logits_mask = logits_mask - mask + mask2 # remove instances within the same class, but retain the agumented instance
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
n_mask = mask2.sum(1)
mean_log_prob_pos = (mask2 * log_prob).sum(1) / torch.where(n_mask>0, n_mask, torch.tensor(1.0).cuda())
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
# loss = loss.view(anchor_count, batch_size).mean()
loss = (loss * (n_mask > 0)).sum()
loss = loss / (n_mask>0).sum()
return loss
class SupConLoss_in(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR
Mean -> Log
"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss_in, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device) # mask=1: positive instance
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases: {i, i} pairs
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
prob = torch.div(exp_logits, exp_logits.sum(1, keepdim=True)) # first sum
# sum_prob = (mask * prob).sum(1)
n_mask = mask.sum(1)
n_mask = torch.where(n_mask > 0, n_mask, torch.tensor(1.0).cuda())
mean_prob = (mask * prob).sum(1) / n_mask # mean loss of each anchor
# if torch.isnan(mean_prob).sum() > 0:
# print("Batch Size: %d. Sum prob = (%f %f); Mean prob = (%f, %f)" % (batch_size,
# torch.max(sum_prob), torch.min(sum_prob),
# torch.max(mean_prob), torch.min(mean_prob)))
# print("Labels: ", labels)
# print("Mask: ", mask)
log_mean_prob_pos = torch.log(mean_prob + 1e-6) # then log
# loss
loss = - (self.temperature / self.base_temperature) * log_mean_prob_pos
# loss = loss.view(anchor_count, batch_size).mean()
loss = ((loss * (n_mask > 0)).sum())/ (n_mask>0).sum() # mean of mean
return loss
class CIL(nn.Module):
def __init__(self, temperature) -> None:
super(CIL, self).__init__()
self.temperature = temperature
def cl(self, rep, aug_rep, neg_rep, mask):
"""
rep: (B, N, D)
aug_rep: (B, N, D)
neg_rep: (B, D)
mask: (B, N)
"""
batch, n, dim = rep.shape
pos_sim = F.cosine_similarity(rep, aug_rep, dim=-1) # (B, n); default: dim=1
tmp = pos_sim
pos_sim = torch.exp(pos_sim/self.temperature)
# print("pos_sim: ", tmp[0])
tmp = (tmp * mask) > 0.5
# print("tmp: ", tmp[0])
# print("pos > 0.5: (%d/%d)" % (tmp.sum(), mask.sum()))
neg_sim = torch.matmul(rep, neg_rep.transpose(0, 1)) # (B, n, B)
# print("neg_sim: ", neg_sim[0, 0])
neg_sim = torch.exp(neg_sim/self.temperature)
b_mask = 1 - torch.eye(batch)
# print("b_mask: ", b_mask)
b_mask = b_mask.unsqueeze(1).repeat(1, n, 1)
b_mask = b_mask * (torch.rand_like(b_mask)>0.5) # maintain half neg_sim
b_mask = b_mask.cuda() # (B, n, B)
neg_sim = b_mask * neg_sim
loss = -1.0 * torch.log(pos_sim / neg_sim.sum(2)) # (B, n)
# print("loss: ", loss[0])
loss = (loss * mask ).sum() / mask.sum() # (B, n)
return loss
def forward(self, rep, evd_count):
"""
get aug_rep & neg_rep, then compute the CL loss
Parameters
------------------
rep: (B, N, D)
doc_len: (B,)
"""
batch, n, dim = rep.shape
aug_rep = []
neg_rep = []
mask = torch.zeros(batch, n)
output = False
for b, (r, l) in enumerate(zip(rep, evd_count)):
index = random.sample(range(l), l)
# index = range(l)
neg_index = random.choice(range(l))
aug_rep.append(torch.cat([r[index], torch.zeros_like(r[l:]).cuda()]))
neg_rep.append(r[neg_index]) # avg_repr as neg_rep
mask[b, :l] = 1.0
aug_rep = torch.stack(aug_rep) # (B, N, D)
neg_rep = torch.stack(neg_rep) # (B, D)
rep = F.normalize(rep, dim=2) # normalize at the feature dimension
aug_rep = F.normalize(aug_rep, dim=2)
neg_rep = F.normalize(neg_rep, dim=1)
mask = mask.cuda()
return self.cl(rep, aug_rep, neg_rep, mask)
class SCL(torch.nn.Module):
def __init__(self, temperature=0.1):
super(SCL, self).__init__()
self.temperature = temperature
def forward(self, inrep_1, inrep_2, label_1, label_2=None):
bs_1 = int(inrep_1.shape[0])
bs_2 = int(inrep_2.shape[0])
if label_2 is None:
normalize_inrep_1 = F.normalize(inrep_1, p=2, dim=1)
normalize_inrep_2 = F.normalize(inrep_2, p=2, dim=1)
cosine_similarity = torch.matmul(normalize_inrep_1, normalize_inrep_2.t()) # bs_1, bs_2
diag = torch.diag(cosine_similarity)
cos_diag = torch.diag_embed(diag) # bs,bs
label = torch.unsqueeze(label_1, -1)
for i in range(label.shape[0] - 1):
if i == 0:
label_mat = torch.cat((label, label), -1)
else:
label_mat = torch.cat((label_mat, label), -1) # bs, bs
#print(label_mat.size())
#print(label.size())
#exit(0)
label_mat = label_mat.cuda()
mid_mat_ = (label_mat.eq(label_mat.t()))
mid_mat = mid_mat_.float()
cosine_similarity = (cosine_similarity-cos_diag) / self.temperature # torche diag is 0
mid_diag = torch.diag_embed(torch.diag(mid_mat))
mid_mat = mid_mat - mid_diag
cosine_similarity = cosine_similarity.masked_fill_(mid_diag.byte().bool(), -float('inf')) # mask torche diag
cos_loss = torch.log(torch.clamp(F.softmax(cosine_similarity, dim=1) + mid_diag, 1e-10, 1e10)) # torche sum of each row is 1
cos_loss = cos_loss * mid_mat
cos_loss = torch.sum(cos_loss, dim=1) / (torch.sum(mid_mat, dim=1) + 1e-10) # bs
else:
if bs_1 != bs_2:
while bs_1 < bs_2:
inrep_2 = inrep_2[:bs_1]
label_2 = label_2[:bs_1]
break
while bs_2 < bs_1:
inrep_2_ = inrep_2
ra = random.randint(0, int(inrep_2_.shape[0]) - 1)
pad = inrep_2_[ra].unsqueeze(0)
lbl_pad = label_2[ra].unsqueeze(0)
inrep_2 = torch.cat((inrep_2, pad), 0)
label_2 = torch.cat((label_2, lbl_pad), 0)
bs_2 = int(inrep_2.shape[0])
normalize_inrep_1 = F.normalize(inrep_1, p=2, dim=1)
normalize_inrep_2 = F.normalize(inrep_2, p=2, dim=1)
cosine_similarity = torch.matmul(normalize_inrep_1, normalize_inrep_2.t()) # bs_1, bs_2
label_1 = torch.unsqueeze(label_1, -1)
for i in range(label_1.shape[0] - 1):
if i == 0:
label_1_mat = torch.cat((label_1, label_1), -1)
else:
label_1_mat = torch.cat((label_1_mat, label_1), -1) # bs, bs
label_2 = torch.unsqueeze(label_2, -1)
for i in range(label_2.shape[0] - 1):
if i == 0:
label_2_mat = torch.cat((label_2, label_2), -1)
else:
label_2_mat = torch.cat((label_2_mat, label_2), -1) # bs, bs
mid_mat_ = (label_1_mat.t().eq(label_2_mat))
mid_mat = mid_mat_.float()
cosine_similarity = cosine_similarity / self.temperature
cos_loss = torch.log(torch.clamp(F.softmax(cosine_similarity, dim=1), 1e-10, 1e10))
cos_loss = cos_loss * mid_mat #find torche sample witorch torche same label
cos_loss = torch.sum(cos_loss, dim=1) / (torch.sum(mid_mat, dim=1) + 1e-10)
cos_loss = -torch.mean(cos_loss, dim=0)
return cos_loss