-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreload_cloth_match.py
148 lines (122 loc) · 5.26 KB
/
reload_cloth_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/python -u
import platform
import json
import os, sys
sys.path.append(os.getcwd())
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from Config import Config
import tflib as lib
from tflib import tianchivect_men as tianchivect
from match_model_czy import WGAN
from Evaluation_men import evaluation
from tflib.wgan_saver import wgan_loader, wgan_saver
flags = tf.flags
flags.DEFINE_string("data_path", "./data", "Where the training/test data is stored.")
FLAGS = flags.FLAGS
seed = 2
def INFO_LOG(info):
print "[%s]%s" % (time.strftime("%Y-%m-%d %X", time.localtime()), info)
filepath = './data/clothing/Men/'
vectorpath = '/home/cuizeyu/amazon_image_feature/clothing/Men/'
with open(filepath + "item_category.json", 'r') as f:
item_category = json.load(f)
with open(filepath + 'cate2id.json', 'r') as f:
cate2id = json.load(f)
def find_item_vec(itemlist):
length = len(itemlist)
with open(vectorpath + itemlist[0] + '.json') as f:
vec = [json.load(f)] * length
return np.asarray(vec).reshape((length, 4096))
def fin_item_cate(item):
return cate2id[item_category[item]]
def main(_):
# Dataset iterator
config = Config(tianchivect)
train_s, train_u, test_gen = tianchivect.load(30, 30, seed)
config.gpuid = 2
# config = Config()
def inf_train_gen():
while True:
for images in train_gen():
yield images
if platform.system() == 'Linux':
gpuid = config.gpuid
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(gpuid)
device = '/gpu:' + str(gpuid)
else:
device = '/cpu:0'
graph = tf.Graph()
with graph.as_default():
trainm = WGAN(config, mode="Train", device=device, reuse=False)
validm = WGAN(config, mode="Valid", device=device, reuse=True)
session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
session_config.gpu_options.allow_growth = True
allocat_time = 0
best_auc = 0
best_acc = 0.
best_epoch = 0
epoch_auc_wdist = []
with tf.Session(graph=graph, config=session_config) as session:
# writer = tf.summary.FileWriter("./util/", session.graph)
session.run(tf.global_variables_initializer())
wgan_loader(session, config, './save/')
for epoch in range(config.epoch_num):
# if epoch > 50:
# config.ITERS = 1
# INFO_LOG("Epoch {}".format(epoch))
# g_cost, d_cost, delta, orth, wdistance = run(session, config, trainm, "Train", train_s, train_u,
# verbose=False)
# INFO_LOG("Epoch %d Train g_costs %.5f, d_cost %.5f, delta %.5f, orth %.5f, wdistance %.5f" %
# (epoch + 1, g_cost, d_cost, delta, orth, wdistance))
# g_cost, d_cost, delta, orth = run(session, config, validm, "Valid", train_s, verbose=False)
# INFO_LOG("Epoch %d Test g_costs %.5f, d_cost %.5f, delta %.5f, orth %.5f" %
# (epoch + 1, g_cost, d_cost, delta, orth))
#
# if epoch % 10 != 1:
# INFO_LOG("*** best AUC now is %.3f in %d epoch" % (best_auc, best_epoch))
# # continue
AUC, acc = evaluation(session, config, validm, test_gen, verbose=False)
INFO_LOG("Epoch %d AUC is %.5f" %
(epoch + 1, AUC))
if best_auc < AUC:
best_auc = AUC
best_epoch = epoch
# wgan_saver(session, config)
if best_acc < acc:
best_acc = acc
INFO_LOG("*** best AUC now is %.5f in %d epoch" % (best_auc, best_epoch))
INFO_LOG("*** best acc now is %.5f" % best_acc)
# if ((epoch +1) % 5 == 0):
# if ((epoch + 1) % 20 != 0):
# use another way to train
# print epoch_auc_wdist
# =============================================================== #
# ==========generate all the style vectors we need ============== #
# =============================================================== #
ttt = 0
item_style_vec = {}
with open("sixstyle_clothing.json", 'r') as f:
itemlist_all = json.load(f)
for itemlist in itemlist_all:
print len(itemlist)
for item in itemlist:
items = [item] * config.BATCH_SIZE
im_input = find_item_vec(items)
c_input = fin_item_cate(item)
ttt += 1
if ttt % 100 == 0:
print ttt
style_vec = session.run(
validm.goutput,
feed_dict={validm.ginput: im_input, validm.ginput_c: np.array(c_input).reshape((1,))}
)
item_style_vec[item] = map(float, list(style_vec[0]))
with open("item_style_vec.json", 'w') as f:
f.write(json.dumps(item_style_vec))
if __name__ == '__main__':
tf.app.run()