-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplot.py
158 lines (147 loc) · 5.43 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''/* Runs Raven 2 simulator by calling packet generator, Raven control software, and visualization code
* Copyright (C) 2015 University of Illinois Board of Trustees, DEPEND Research Group, Creators: Homa Alemzadeh and Daniel Chen
*
* This file is part of Raven 2 Surgical Simulator.
*
* Raven 2 Surgical Simulator is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Raven 2 Surgical Simulator is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Raven 2 Control. If not, see <http://www.gnu.org/licenses/>.
*/'''
import csv
import time
import os
import subprocess
import sys
import matplotlib.pyplot as plt
import math
import numpy as np
print "\nPlotting the results.."
# Get raven_home directory
env = os.environ.copy()
splits = env['ROS_PACKAGE_PATH'].split(':')
raven_home = splits[0]
csvfile1 = open(raven_home+'/latest_run.csv')
reader = csv.reader(csvfile1)
reader = csv.reader(x.replace('\0', '') for x in csvfile1)
in_file = open(raven_home+'/input_data.txt','r')
runlevel = 0
packet_no = 111
line_no = 0
headers = reader.next()
#print headers
# Find the indices for the variables in the datasheet
runlevel_index = headers.index('field.runlevel');
packet_index = headers.index('field.last_seq');
mpos_index = headers.index('field.mpos0');
dmpos_index = headers.index('field.mpos_d0');
mvel_index = headers.index('field.mvel0');
dmvel_index = headers.index('field.mvel_d0');
dac_index = headers.index('field.current_cmd0');
jpos_index = headers.index('field.jpos0');
djpos_index = headers.index('field.jpos_d0');
dpos_index = headers.index('field.pos_d0');
pos_index = headers.index('field.pos0');
# Skip the datasheet lines until runlevel = 3 and packet number is 1
while (runlevel < 3) or (packet_no == 111) or (packet_no == 0):
line = reader.next()
runlevel = int(line[runlevel_index])
packet_no = int(line[packet_index])
#print runlevel
line_no = line_no + 1
print '\rStarted at Line = '+ str(line_no)+ ' and Packet = '+str(packet_no)
# Get the estimated desired and actual trajectories from the last run
est_dmpos = [[],[],[]]
est_mpos = [[],[],[]]
est_mvel = [[],[],[]]
est_dac = [[],[],[],[],[]]
est_djpos = [[],[],[],[],[],[],[]]
est_jpos = [[],[],[],[],[],[],[]]
est_dpos = [[],[],[]]
est_pos = [[],[],[]]
indices = [0,1,2,4,5,6,7]
i = 0;
for line in reader:
# We are going to compare estimated ones, so shift one sample ahead
if (i > 1):
for j in range(0,3):
est_dmpos[j].append(float(line[dmpos_index+indices[j]])*math.pi/180)
est_mpos[j].append(float(line[mpos_index+indices[j]])*math.pi/180)
est_mvel[j].append(float(line[mvel_index+indices[j]])*math.pi/180)
for j in range(0,5):
est_dac[j].append(float(line[dac_index+indices[j]]))
for j in range(0,7):
est_djpos[j].append(float(line[djpos_index+indices[j]])*math.pi/180)
est_jpos[j].append(float(line[jpos_index+indices[j]])*math.pi/180)
for j in range(0,3):
est_dpos[j].append(float(line[dpos_index+indices[j]])*math.pi/180)
est_pos[j].append(float(line[pos_index+indices[j]])*math.pi/180)
i = i + 1;
csvfile1.close()
# Get the desired and actural trajectories from the input data
dmpos = [[],[],[]]
mpos = [[],[],[]]
mvel = [[],[],[]]
dac = [[],[],[],[],[]]
djpos = [[],[],[],[],[],[],[]]
jpos = [[],[],[],[],[],[],[]]
dpos = [[],[],[]]
pos = [[],[],[]]
for line in in_file:
results = line.strip().split(',')
for j in range(0,3):
dmpos[j].append(float(results[j*6]))
mpos[j].append(float(results[j*6+1]))
mvel[j].append(float(results[j*6+2]))
for j in range(0,5):
dac[j].append(float(results[indices[j]*6+3]))
for j in range(0,7):
djpos[j].append(float(results[indices[j]*6+4]))
jpos[j].append(float(results[indices[j]*6+5]))
for j in range(0,3):
dpos[j].append(float(results[48+j*2]))
pos[j].append(float(results[48+j*2+1]))
in_file.close()
f1, axarr1 = plt.subplots(3, 2, sharex=True)
axarr1[0,0].set_title("Motor Positions (Gold Arm)")
axarr1[0,1].set_title("Motor Velocities (Gold Arm)")
for j in range(0,3):
axarr1[j, 0].plot(dmpos[j], '+g')
axarr1[j, 0].plot(est_dmpos[j], '+k')
axarr1[j, 0].plot(mpos[j], 'b')
axarr1[j, 0].plot(est_mpos[j], 'r')
axarr1[j, 1].plot(mvel[j], 'b')
axarr1[j, 1].plot(est_mvel[j], 'r')
axarr1[j, 0].set_ylabel('Joint '+str(indices[j]))
f2, axarr2 = plt.subplots(3, 1, sharex=True)
axarr2[0].set_title("DAC Values (Gold Arm)")
for j in range(0,3):
axarr2[j].plot(dac[j], 'b')
axarr2[j].plot(est_dac[j], 'r')
axarr2[j].set_ylabel('Joint '+str(indices[j]))
f3, axarr3 = plt.subplots(7, 1, sharex=True)
axarr3[0].set_title("Joint Positions (Gold Arm)")
for j in range(0,7):
axarr3[j].plot(djpos[j], '+g')
axarr3[j].plot(est_djpos[j], '+k')
axarr3[j].plot(jpos[j], 'b')
axarr3[j].plot(est_jpos[j], 'r')
axarr3[j].set_ylabel('Joint '+str(indices[j]))
f4, axarr4 = plt.subplots(3, 1, sharex=True)
axarr4[0].set_title("End-Effector Positions (Gold Arm)")
pos_labels = ['X','Y','Z']
for j in range(0,3):
axarr4[j].plot(dpos[j], '+g')
axarr4[j].plot(est_dpos[j], '+k')
axarr4[j].plot(pos[j], 'b')
axarr4[j].plot(est_pos[j], 'r')
axarr4[j].set_ylabel(pos_labels[j])
plt.show()