forked from TIBHannover/GeoEstimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscene_classification.py
100 lines (81 loc) · 3.89 KB
/
scene_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import csv
import argparse
import requests
import numpy as np
from PIL import Image
import torch
import torchvision
import torchvision.transforms as tfm
def download_scene_hierarchy_file():
print("Downloading scene hierarchy file from places365")
response = requests.get('https://docs.google.com/spreadsheet/ccc?key=1H7ADoEIGgbF_eXh9kcJjCs5j_r3VJwke4nebhkdzksg&output=csv')
with open("scene_hierarchy_places365.csv", "w") as file:
file.write(response.content.decode() + "\n")
def download_pretrained_on_places(model_name="resnet50"):
print(f"Downloading trained {model_name} on places365")
response = requests.get(f'http://places2.csail.mit.edu/models_places365/{model_name}_places365.pth.tar')
with open(f"{model_name}_places365.pth.tar", "wb") as file:
file.write(response.content)
class SceneClassifier(torch.nn.Module):
def __init__(self, scene_hierarchy_file='scene_hierarchy_places365.csv', model_name="resnet50"):
super().__init__()
assert model_name in ["resnet50", "resnet152"], f"model_name is {model_name}, should be resnet50 or resnet152"
if not os.path.exists(scene_hierarchy_file):
download_scene_hierarchy_file()
# read scene_hierarchy file to get lvl1 meta information
print('Loading scene hierarchy ...')
hierarchy_places3 = []
with open(scene_hierarchy_file, 'r') as csvfile:
content = csv.reader(csvfile, delimiter=',')
next(content) # skip explanation line
next(content) # skip explanation line
for line in content:
hierarchy_places3.append(line[1:4])
hierarchy_places3 = np.asarray(hierarchy_places3, dtype=float)
# normalize label if it belongs to multiple categories
self.hierarchy_places3 = hierarchy_places3 / np.expand_dims(np.sum(hierarchy_places3, axis=1), axis=-1)
if not os.path.exists(f"{model_name}_places365.pth.tar"):
download_pretrained_on_places(model_name)
self.model = torchvision.models.resnet50(num_classes=365)
state_dict = torch.load(f"{model_name}_places365.pth.tar")["state_dict"]
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
self.model.load_state_dict(state_dict)
self.model.eval()
self.transform = tfm.Compose([
tfm.ToTensor(),
tfm.Resize([256, 256]),
tfm.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def process_images(self, images_paths):
pil_images = [Image.open(p) for p in images_paths]
batch = [self.transform(p) for p in pil_images]
batch = torch.stack(batch)
return self(batch)
def forward(self, batch):
# Return a list of number that can be 0, 1 or 2
with torch.inference_mode():
b, c, h, w = batch.shape
scene_probs = self.model(batch)
places_prob = np.matmul(scene_probs, self.hierarchy_places3)
scene_label_int = np.argmax(places_prob, axis=1)
return scene_label_int.tolist()
def label_int_to_str(self, scene_label_int):
if scene_label_int == 0:
return 'indoor'
elif scene_label_int == 1:
return 'natural'
elif scene_label_int == 2:
return 'urban'
def parse_args():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--image_path', type=str, required=True, help='path to image file')
parser.add_argument('--cpu', action='store_true', help='use cpu')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
scene_classifier = SceneClassifier()
places_prob = scene_classifier.process_images([args.image_path])
label = scene_classifier.label_int_to_str(places_prob[0])
print(f"Image {args.image_path} has label {label}")